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With the fondest of memories, to my first class:
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Preface

chnt trends in chemical education force students of chemistry
into contact with the applications of quantum mechanics at an
carlier and earlier point in their development. This direction of
undergraduate chemistry curricula is important for several reasons:
the wealth of physico-chemical information which is gleaned from
molecular spectroscopy and other techniques which are based on
quantum mechanics; the trend of descriptive chemistry to rely on
concepts taken from quantum mechanics; the growing concern in
theoretical chemistry to adequately explain molecular phenomena by
means of quantum mechanics.

The rush to introduce the student to these bold and exciting studies
often leaves him uncomfortable in the mathematical formalism in
which these studies are couched, unsure of the connection between
the conventional Newtonian world to which he is accustomed and
the world of molecular phenomena, and unable to apply his new-
found theoretical knowledge to problems of molecular structure and
motion.

In the present work I shall attempt to present only two main topics
from mathematics, and two from physics. These are the calculus of
orthogonal functions and the algebra of vector spaces from mathe-
matics, and the Lagrangian and Hamiltonian formulation of classical

Vil



viii Preface

mechanics and its applications to molecular motion from physics.
I have selected these four topics because of their relevance to modern
quantum chemistry, especially in the application of quantum me-
chanics to molecular spectroscopy. This emphasis on molecular
spectroscopy betrays my personal interest and excitement in this
growing and popular field of endeavor; it also eliminates from the
pages of this brief book a consideration of other topics which may be
equally stimulating to my colleagues and to their students. Rela-
tivity, electricity, magnetism, and radiation physics were eliminated
because they are generally better treated elsewhere and in greater
depth than this work allows; similarly, group theory and differen-
tial equations, including approximate methods of solution, are left
to other treatises.

This book attempts to lay down a central core of physical and
mathematical background for quantum chemistry in general, but for
molecular spectroscopy in particular. It assumes a knowledge of
calculus through partial derivatives and multiple integration (usu-
ally about one and one-half years), a year of physics, and chemistry
through a year of physical chemistry. This material has been used
as the basis of a.one-semester course at Bryn Mawr College entitled
““Applied Mathematics for Chemists’ for students with approxi-
mately the indicated background; this course immediately precedes
the first course in quantum mechanics.

The author is indebted to Addison-Wesley Publishing Co. for per-
mission to quote from their publications, and W. A. Benjamin,
Inc. for their continued help and encouragement.

JAY MARTIN ANDERSON

Bryn Mawr, Pennsylvania
October 1965
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Introduction

1-1 EIGENVALUE PROBLEMS IN QUANTUM MECHANICS

The mathematics and physics that are relevant to quantum
chemistry are, almost without exception, oriented toward the
solution of a particular kind of problem, the calculation of proper-
ties of 2 molecular system from the fundamental properties (charge,
mass) of the particles composing the system. A good example of
this is the calculation of the energy of the electrons in a molecule,
using only the charge of the eclectron, Planck’s constant, and so
forth. The reader is probably already aware of the nature of the
answer to this problem. There are a number of discrete values for
the energy which the electrons in the molecule can assume up to a
point, but higher values for the electronic energy occur in a con-
tinuous range. These energy values are shown qualitatively in
Fig. 1-1. Quantum mechanics does provide the result that some
physical quantities may take on only some values, not 4// values, as
experiments indicated. The allowed values for a physical quantity
are called eigenvalues, from the German for characteristic values. A
particular physical quantity may assume an cigenvalue from a
continuum, or perhaps from a finite or infinite discrete set of eigen-
values. The energy of an atom, for instance, may take on one of an

1



2 Mathematics for Quantum Chemistry

-« Continuum, or range of continuous
eigenvalues, of energy. Corresponds
to an ionizing molecule.

< Range of discrete eigenvalues
of energy. Corresponds to
electronically excited molecule.

- Lowest eigenvalue of energy.
Corresponds to ground state of molecule.

Figure 1-1 Eigenvalues of the energy of a molecule.

infinite number of discrete values, as well as values from a higher-
lying range of continuous eigenvalues, called the continuum. More
often than not, chemistry is concerned with the discrete eigenvalues
of a quantity, rather than its continuum of eigenvalues.

The mathematical problem of finding the eigenvalues of a quantity
is called an eigenvalue problem; it is usually cast in the form of an
equation called an eigenvalue equation. An eigenvalue equation for a
physical quantity Q has the deceptively simple appearance

af = ¢f a-n

In this equation, f is a function, called the eigenfunction for the quan-
tity O, with the cigenvalue 4. The element Q is called an operazor,
and the statement @f tells us to change the function f into a new
function, according to a set of instructions implicit in the definition
of the operator Q. The cigenvalue equation, Eq. 1-1, then informs
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us that, by applying these ““instructions’” of the operator @ to f, we
get merely a multiple, ¢, of the function f. The function Qf differs
from the function f by a multiplicative constant 4. It may very well
be the case that several eigenfunctions have the same eigenvalue;
that is, @fi = ¢f1, @2 = ¢f», and so forth. 1If this is the case, the
eigenvalue g is said to be degeneratey and the number of eigenfunctions
that have the same cigenvalue is called the degree of degeneracy.

Operators may simply be numbers or functions; for example, the
operator X may be defined by the instruction “‘multiply the operand
function by x’; thus, € x> = x*. On the other hand, operators may
be more complex than just numbers or functions. For example, the
student has already used the operator (although probably not by
that name) A, which means, or is defined by the instructions, “‘evalu-
ate the change in.”" For example, if we operate A on the thermo-
dynamic function H, the enthalpy, we get a new function AH, the
change in the enthalpy, AH = H, — H,. Another operator that is
familiar is d/dx, meaning, ‘‘evaluate the derivative with respect
to x.”’

It is the job of quantum mechanics to tell us how to form operators
corresponding to the physical quantities which we wish to measure.
Our task for the moment will be to learn how to solve the eigenvalue
equations for such operators, and especially the vocabulary and
concepts that are used to discuss the solutions. Quantum mechanics
itself, however, grew up from two different points of view, which
represent two analogous mathematical formulations of eigenvalue
problems.

The first of these points of view is the wave mechanics of Schrodinger
In wave mechanics, operators are differential expressions, such as the
operator d/dx referred to above, and the eigenvalue equation then
takes the form of a differential equation, and relies on the calculus for
its solution. The second formulation is the matrix mechanics of
Heisenberg, in which operators are represented by algebraic entities
called matrices; instead of a function in the eigenvalue equation, the
matrix operator operates on a vector £ to transform £ into a vector
parallel to £, but ¢ times as long:

Qt = 4¢ (-2

Equation 1-2 is the matrix-mechanical formulation of the eigenvalue
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problem. Matrices and vectors are defined and discussed in detail in
Chapter 3. As in Eq. 1-1, g is the cigenvalue of the quantity Q, &
is the eigenvector, and Q is the operator represented as a matrix. The
solution of this form of the cigenvalue problem relies on algebra.

These apparently different mathematical and physical approaches
to quantum mechanical problems are really deeply interrelated; the
work of Dirac shows the upderlying equivalence of the two points of
view, as well as of the corresponding mathematical techniques.

1-2 EIGENVALUE PROBLEMS IN CLASSICAL MECHANICS

We have briefly discussed the role of cigenvalue equations in
quantum mechanics. But a number of problems of classical me-
chanics may also be expressed in a simple and meaningful way as
eigenvalue problems. Among these are the problems of the vibra-
tions and rotations of a mechanical system, such as a molecule.
These physical problems are of importance to the chemist concerned
with molecular motion and spectroscopy. In vibrations, the normal
modes and frequencies of oscillation appear as ecigenvectors and
eigenvalues; in rotations, the principal axes and moments of inertia
emerge from an eigenvalue problem. It should be noted, however,
that a correct description of these systems on the molecular level
nearly always requires quantum mechanics, not classical mechanics.

1-3 SCOPE OF THIS BOOK

With our course thus determined by the kinds of problems we wish
to be able to set up, solve, and understand, we shall proceed first to a
study of a certain class of functions gertﬁane to eigenfunction prob-
lems, then to a number of aspects of vector algebra and matrix alge-
bra, finally to a synthesis of the two points of view of eigenvalue
problems. We shall conclude with a study of classical mechanics to
see how the vibrations of a mechanical system, such as a molecule,
may be formulated as an eigenvalue problem. We shall also attempt
to formulate Newtonian mechanics in such a way that the connec-
tion to quantum mechanics is clear.
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Along the way, we shall learn some methods of solving eigenvalue
problems, and take up applications of interest in chemistry. Our
emphasis throughout will be primarily on concepts, secondarily on
methods, and only lastly on the detailed proofs of the mathematical
theorems. At the end of each chapter, a sct of problems is given.
Answers and hints for solution for many of the problems are found
at the back of the book.

Problem

1. Find the cigenfunctions of the operator d/dx.



Orthogonal Functions

Two properties are, almost without exception, possessed by
the eigenfunctions of operators corresponding to important
physical quantities: orthogonality and normality. The purpose of this
chapter is to develop these concepts in detail and to illustrate a num-
ber of their applications. Of primary usefulness is the idea of an
expansion in orthogonal functions. As an example of this technique, we
shall examine the Fourier series in some detail. We shall also learn
how to construct orthogonal functions by the Schmidt orthogonaliza-
tion procedure, and how orthogonal functions arise from the solution of
particular differential equations. To illustrate the latter concepts,
we shall investigate the properties of the Legendre polynomials, and
briefly mention other of the important *‘special functions’’ which
arise in quantum chemistry. A brief discussion of some of the ele-
ments of the calculus and of complex variables are given in the
Appendix. The reader would be wise to check his familiarity with
this material before advancing into the present chapter.

2-1 INTRODUCTORY CONCEPTS:
ORTHOGONALITY AND NORMALIZATION

We may best begin our discussion of orthogonal functions by
reviewing the concept of function. The concept of function has three
essential ingredients. We agree first to define a function on a particu-
6
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lar region of the number scale, say, from 4 to 5. Second, we agree
that there exists a variable (say, x) that can independently assume
values in the region from « to 5. Third, we agree by some prescribed
rule that for any value of x there exists a definize value of y. Then we
say thaty is a function of x on the range s < x < b. This definition
may be mod4ed in 2 number of ways—so as to include more than one
independe... sariable—but these three essential ingredients persist:
an independent variable; a range on which the independent variable
assumes its values; a dependent variable related to the independent
variable by a prescribed rule.

The simplest way of notating the statement "’y is a function of x”’
is to write y = y(x). This notation is compact, yet may be  s-
leading. The left side of the equation is simply the name of a
variable—we do not know it is the dependent variable until we see
the right side of the equation. The right side uses the letter y
again, but here the symbol y( ) means something different than just
the name of the variable. The meaning of y( ) is that y is a depend-
ent variable whose value may be found by some prescribed rule from
the quantity inside the parentheses. Left out of the notation y =
9(x) is the interval, or range, of the independent variable x for which
the functional relationship is defined. This is not always of im-
portance in elementary considerations of the idea of function, but it
is of supreme importance to the notion of expansion of a function.

Hence, we introduce a definition.

The expansion interval is usually notated [4, 4], meaning that the
independent variable x is allowed values on the range # < x < b.
We proceed now to four definitions in rapid succession.
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The inner product of two functions is defined on their expansion
interval. The inner product is notated by some authors (f, g), but
this can easily be confused with the notation for two-dimensional
coordinates or for an open interval. We shall use the notation
(f|g. The order is quite important:

(g f) = S gC*(x) dx = (S flx)*g(x) dx)*
={flg* (2-2)

For real-valued functions, the order is not important. Equation 2-2
illustrates an important feature of the inner product that arises again
and again: “‘turning around,’’ or transposing an inner product gives the
complex conjugate of that inner product. Constants may be removed at
will from the inner product symbol: if 4 and ¢ are (complex) num-
bers, (b | cg) = b*c(f | &)-

The inner product is a concept of no small significance. It has a
geometrical analog, that of the doz product or scalar product of vectors
that may already be familiar, which we shall discuss in Chapter 3.

In analogy to the geometrical property of perpendicularity of
vectors, both functions and vectors afford the sweeping and general
concept of orthogonality.

If the inner product is to be zero, it does not matter which function
““comes first”” in the inner product, so the orthogonality of f and g
may be expressed by either (f | g = Oor{g | f) = 0. The perpendicu-
larity of two vectors is related to this definition of orthogonality:
two vectors are perpendicular if their dot product is zero.




