" Progress in Mathematics - Edited by
J. Coates and
S. Helgason

Victor G. Kac

Infinite Dimensional
Lie Algebras

Birkhauser



Victor G. Kac
Infinite Dimensional
Lie Algebras

An Introduction

1983 Birkhduser

Boston ¢ Basel ¢ Stuttgart



Author:

Victor G. Kac

Mathematics Department
Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge, MA 02139

Library of Congress Cataloging in Publication Data

Kac, Victor G., 1943 —
Infinite dimensional Lie algebras.

(Progress in mathematics ; vol. 44)

Bibliography: p.

Includes index.

1. Lie algebras. 1. Title. II. Series: Progress in
mathematics (Boston, Mass.) ; vol. 44.
QA252.3.K33 1983 512’.55 83-25809
ISBN 0-8176-3118-6

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Kac, Victor G.:
Infinite dimensional Lie algebras / an introd. /
Victor G. Kac. - Basel ; Boston ; Stuttgart :
Birkhauser, 1984.

(Progress in mathematics ; Vol. 44)

ISBN 3-7643-3118-6

sfr 62.00

NE: GT

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior permission of
the copyright owner.

© Birkhiuser Boston, Inc., 1983
ISBN 0-8176-3118-6

ISBN 3-7643-3118-6

Printed in USA

987654321



Progress in Mathematics
Vol. 44

Edited by
J. Coates and
S. Helgason

Birkhduser
Boston - Basel - Stuttgart



Dedicated to my teacher,
Ernest Borisovich Vinberg

with gratitude and admiration



Grau, teurer Freund, ist alle Theorie,
Und griin des Lebens goldner Baum.
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Introduction.

0.1. The creators of the Lie theory viewed a Lie group as a group of symmetries of
an algebraic or a geometric object; the corresponding Lie algebra, from their point
of view, was the set of infinitesimal transformations. Since the group of symmetries
of the object is not necessarily finite-dimensional, S. Lie considered not only the
problem of classification of subgroups of GL,, but also the problem of classification
of infinite-dimensional groups of transformations.

The problem of classification of simple finite-dimensional Lie algebras over the
field of complex numbers was solved by the end of the 19th century by W. Killing
and E. Cartan. (A vivid description of the history of this discovery, one of the most
remarkable in all of mathematics, can be found in Hawkins [1982].) And just over
a decade later, Cartan classified simple infinite-dimensional Lie algebras of vector
ficlds on a finite-dimensional space.

Starting with the works of Lie, Killing, and Cartan, the theory of finite-
dimensional Lie groups and Lie algebras has developed systematically in depth
and scope. On the other hand, Cartan’s works on simple infinite-dimensional Lie
algebras had been virtually forgotten until the mid-sixties. A resurgence of interest in
this area began with the work of Guillemin-Sternberg [1964] and Singer-Sternberg
[1965], which developed an adequate algebraic language and the machinery of
filtered and graded Lie algebras. They were, however, unable to find an algebraic
proof of Cartan’s classification theorem (see Guillemin-Quillen-Sternberg [1966]).
This was done by Weisfeiler [1968], who reduced the problem to the classification

of simple Z-graded Lie algebras of finite “depth” g = @ 4;, where dim g; < oo
j2—d
and the gp-module §_; is irreducible.

0.2. At the present time there is no general theory of infinite-dimensional Lie
groups and algebras and their representations. There are, however, four classes
of infinite-dimensional Lie groups and algebras that underwent a more or less
intensive study. These are, first of all, the above-meuntioned Lie algebras of vector
fields and the corresponding groups of diffeomorphisms of a manifold. Starting
with the works of Gelfand-Fuchs [1969], [197CA,B], there emerged an important
direction having many geometric applications, which is the cohomology theory of
infinite-dimensional Lie algebras of vector fields on a finite-dimensional manifold.
There is also a rather large number of works which study and classify various
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classes of representations of the groups of diffecomorphisms of a manifold. One
should probably include in the first class the groups of biregular automorphisms of
an algebraic variety (see Shafarevich [1982]).

The second class consists of Lie groups (resp. Lie algebras) of smooth mappings
of a given manifold into a finite-dimensional Lie group (resp. Lie algebra). In other
words, this is a group (resp. Lie algebra) of matrices over some function algebra
but viewed over the base field. (The physicists refer to certain central extensions of
these Lie algebras as current algebras.) The main subject of study in this case has
been certain special families of representatons.

The third class consists of the classical Lie groups and algebras of operators
in a Hilbert or Banach space. There is a rather large number of scattered results
in this area, which study the structure of these Lie groups and algebras and
their representations. A representation which plays an important role in quantum
field theory is the Segal-Shale-Weil (or metaplectic) representation of an infinite-
dimensional symplectic group.

I shall not discuss in this book the three classes of infinite-dimensional Lie
algebras listed above, with the exception of those closely related to the Lie algebras
of the fourth class, which we consider below. The reader interested in these three
classes should consult the literature cited at the end of the book.

Finally, the fourth class of infinite-dimensional Lie algebras is the class of the
so-called Kac-Moody algebras, the subject of the present book.

0.3. Let us briefly discuss the main concepts of the structural theory of Kac-Moody
algebras. Let A = (a,-]-):"j=1 be a generalized Cartan matriz, i.e. an integral n X n
matrix such that a; = 2, a;; < 0, and a;; = 0 implies aj; = 0. The associated
Kac-Moody algebra §'(A) is a complex Lie algebra on 3n generators e;, f;, h;
(¢ =1,...,n) and the following defining relations (4,7, =1,...,n):

[hil h_]] == 0: [C,’, f‘b] == h'i; [e‘iy f]] =0if ¢ 7é ] )
(0.3.1) [hiy e5] = aijej,  [hi, fj] = —aisf5,

(ade;)' "%e; =0, (adfi)' ™ f; =0ifis%.
(The definition given in the main text of the book (see Chapter 1) is different from
the above; it is more convenient for a number of reasons. The proof of the fact that
the derived algebra of the Lie algebra g(A) defined in Chapter 1 coincides with the
Lie algebra g(A) defined by relations (0.3.1) has been obtained quite recently; this
proof appears in Chapter 9.)

I came to consider these Lie algebras while trying to understand and
generalize the works of Guillemin-Quillen-Singer-Sternberg-Weisfeiler on Cartan’s
classification. The key idea was to consider arbitrary simple Z-graded Lie algebras
0= @ g;; but since there are too many such Lie algebras, the point was to require

J
the dimension of §; to grow no faster than some polynomial in j. (One can show

that Lie algebras of finite depth do satisfy this condition, and that this condition
does not depend on the gradation.) Such Lie algebras were classified under some



technical hypotheses (see Kac [1968 B]). It turned out that in addition to Cartan’s
four series of Lie algebras of polynomial vector fields, there is another class of
infinite-dimensional Lie algebras of polynomial growth, which are called affine
Lie algebras (more precisely, they are the quotients of affine Lie algebras by the
1-dimensional center). At the same time, Moody [1968] independently undertook
the study of the Lie algebras g'(A).

The class of Kac-Moody algebras breaks up into three subclasses. To describe
them, it is convenient to assume that the matrix A is indecomposable (i.e. there
is no partition of the set {1,...,n} into two non-empty subsets so that a;; =0
whenever 7 belongs to the first subset, while 7 belongs to the second; this is done
without loss of generality since the direct sum of matrices corresponds to the direct
sum of Kac-Moody algebras). Then there are the following three mutually exclusive
possibilities:

a) There is a vector  of positive integers such that all the coordinates of the vector
Af are positive. In such case all the principal minors of the matrix A are positive
and the Lie algebra g'(A) is finite-dimensional.

b) There is a vector § of positive integers such that A6 = 0. In such case all the
principal minors of the matrix A are non-negative and det A = 0; the algebra
@/(A) is infinite-dimensional, but is of polynomial growth (moreover, it admits a
Z-gradation by subspaces of uniformly bounded dimension). The Lie algebras of
this subclass are called affine Lie algebras.

c) There is a vector a of positive integers such that all the coordinates of the vector
Aa are negative. In such case the Lie algebra g(A) is of exponential growth.

The main achievement of the Killing-Cartan theory may be formulated as
follows: a simple finite-dimensional complex Lie algebra is isomorphic to one of
the Lie algebras of the subclass a). (Note that the classification of matrices of type
a) and b) is a rather simple problem.) The existence of the generators satisfying
relations (0.3.1) was pointed out by Chevalley [1948]. (Much later Serre [1966]
showed that these are defining relatons.)

It turned out that most of the classical concepts of the Killing-Cartan-Weyl
theory can be carried over to the entire class of Kac-Moody algebras, such as the
Cartan subalgebra, the root system, the Weyl group, etc. In doing so one discovers
a series of new phenomena, which the book treats in detail (see Chapters 1-6). I
shall only point out here that g'(A) does not always possess a nonzero invariant
bilinear form. This is the case if and only if the matrix A is symmetrizable, i.e. the
matrix DA is symmetric for some non-degenerate diagonal matrix D (see Chapter
2).

0.4. It is an important property of affine Lie algebras that they possess a simple
realization (see Chapters 7 and 8). Here I shall explain this realization for the
example of the Kac-Moody algebra associated to the extended Cartan matrix A of
a simple finite-dimensional complex Lie algebra g. (All such matrices are “affine”
generalized Cartan matrices; the corresponding algebra /(A) is called a non-twisted
affine Lie algebra.) Namely, the affine Lie algebra ¢(A) is a central extension by the
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1-dimensional center of the Lie algebra of polynomial maps of the circle into the
simple finite-dimensional complex Lie algebra g (so that it is the simplest example
of a Lie algebra of the second class mentioned in 0.2).

More precisely, let us consider the Lie algebra § in some faithful finite-
dimensional representation. Then the Lie algebra §/(A) is isomorphic to the Lie
algebra on the complex space (C[t,t7!] ®@¢ 8) @ Tc with the bracket

o e, 1) © ] = () — b0a(6) R tr 22D,

so that Tc is the (1-dimensional) center. This realization allows us to study affine
Lie algebras from another point of view. In particular, the algebra of vector fields
on the circle (the simplest algebra of the first class) plays an important role in the
theory of affine Lie algebras.

Note also that the Lie algebras of the fourth class are closely related to the
affine Lie algebras of infinite rank, considered in Chapters 7 and 14.

Unfortunately, no simple realization has been found up to now for any non-affine
infinite-dimensional Kac-Moody algebra. This question appears to be one of the
most important open problems of the theory.

0.5. An important concept missing from the first works in Kac-Moody algebras
was the concept of an integrable highest weight representation (introduced in Kac
[1974]). Given a sequence of non-negative integers A = (\y, .. .»An), the integrable
highest weight representation of a Kac-Moody algebra g(A) is an irreducible
representation 7, of §'(A) on a complex vector space L(A), which is determined by
the property that there is a non-zero vector vy € L(A) such that

ma(ei)va = 0 and my(hi)up = \up (1 =1,. .., n).
(This terminology is explained by the fact that A is called the highest weight, and

the conditions on A are necessary and sufficient for being able to integrate 7, and
obtain a representation of the group.)

Cartan’s theorem on the highest weight asserts that all the representations A
of a complex simple finite-dimensional Lie algebra are finite-dimensional, and that
every finite-dimensional irreducible representation is equivalent to one of the A

That the representations 7, are finite-dimensional (the most nontrivial part
of Cartan’s theorem) was proved by Cartan by examining the cases, one by
one. A purely algebraic proof was found much later by C. Chevalley [1948] (a
“transcendental” proof had been found earlier by H. Weyl). This brief note by
Chevalley appears in retrospect as the precursor of the algebraization of the
representation theory of Lie groups. This note also contains, in an embryonic form,
many of the basic concepts of the theory of Kac-Moody algebras.

The algebraization of the representation theory of Lie groups, which has
undergone such an cxplosive development during the last decade, started with
the work Bernstein-Gelfand-Gelfand [1971] on Verma modules (the first nontrivial
results about these modules were obtained by Verma [1968]). In particular, using the
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Verma modules, Bernstein-Gelfand-Gelfand gave a transparent algebraic proof of
Weyl’s formula for the characters of finite-dimensional irreducible representations

of finite-dimensional simple Lie algebras.

At about the same time Macdonald [1972] obtained his remarkable identities.
In this work he undertook to generalize the Weyl denominator identity to the case
of affine root systems. He remarked that a straightforward generalization is actually
false. To salvage the situation he had to add some “mysterious” factors, which he
was able to determine as a result of lengthy calculations. The simplest example of
Macdonald’s identities is the famous Jacobi triple product identity:

H (1 _ unv'n)(l _ un+1vn)(1 _ u'nvn+l) — z (_l)muim(m-kl)v%m(m“l) .
n>1 neZ
The “mysterious” factors which do not correspond to affine roots are the factors
(1 — u™"™).

After the appearance of the two works mentioned above very little remained
to be done: one had to place them on the desk next to one another to understand
that Macdonald’s result is only the tip of the iceberg—the representation theory of
Kac-Moody algebras. Namely, it turned out that a simplified version of Bernstein-
Gelfand-Gelfand’s proof may be applied to the proof of a formula generalizing Weyl’s
formula, for the formal character of the representation m, of an arbitrary Kac-Moody
algebra /(A) corresponding to a symmetrizable matrix A. In the case of the simplest
1-dimensional representation 7, this formula becomes the generalization of Weyl’s
denominator identity. In the case of an affine Lie algebra, the generalized Weyl
denominator identity turns out to be equivalent to the Macdonald identities. In the
process, the “mysterious” factors receive a simple interpretation: they correspond
to the so-called imaginary roots (i.e. roots that one should add to the affine roots
to obtain all the roots of the affine Lie algebra). Note that the simplest example of
the Jacobi triple product identity turns out to be just the generalized denominator

2 =2
—2 2

The exposition of these results (obtained in the note Kac [1974]) may be found
in Chapter 10. Chapters 9-14 are devoted to the general theory of highest weight
representations and their applications.

identity for the affine Lie algebra corresponding to the matrix (

The main tool of the theory of representations with highest weight is the
generalized Casimir operator (see Chapter 2). Unfortunately, the construction of
this operator depends on whether the matrix A is symmetrizable. The question
whether one can lift the hypothesis of symmetrizability of the matrix A remains
open. Another, more important question is the following: what is an integrable
highest weight representation of the Lie algebra of maps of an arbitrary manifold
into a simple [inite-dimensional Lie algebra?

Once the integrable highest weight representations had been introduced, the
theory of Kac-Moody algebras got off the ground and has been developing since at
an accelerating speed. In the past decade this theory has emerged as a field that
has close connections with many areas of mathematics and mathematical physics,
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such as invariant theory, combinatorics, topology, the theory of modular forms and
theta functions, the theory of singularities, Hamiltonian mechanics, and quantum

field theory.

This book contains a detailed exposition of the foundations of the theory of
Kac-Moody algebras and their integrable representations. Besides the application
to the Macdonald identities mentioned above (Chapter 12), the book discusses
the application to the classification of finite order automorphisms of simple finite-
dimensional Lie algebras (Chapter 8), and the connection with the theory of
modular forms and theta functions (Chapter 13). The last chapter discusses the
remarkable connection between the representation theory of affine Lie algebras and
the Korteweg-de Vries type equations, discovered recently by the Kyoto school.

A theory of Lie algebras is usually interesting, insofar as it is related to group
theory, and Kac-Moody algebras are no exception. Recently there appeared a series
of deep results on groups associated with Kac-Moody algebras. A discussion of these
results would require writing another book. I chose to make only a few comments
regarding this subject at the end of some chapters.

0.7. Throughout the book the base field is the field of complex numbers. However,
all the results of the book, except, of course, for the ones concerning Hermitian
forms and convergence problems, can be extended without difficulty to the case of
an arbitrary field of characteristic zero.

0.8. Motivations are provided at the beginning of each chapter, which ends with a
discussion of related results. The main text of each chapter is followed by exercises
(whose total number exceeds 250). Some of them are elementary, others constitute
a briefl exposition of original works. I hope that these expositions are sufficiently
detailed for the diligent reader to reconstruct all the proofs. The square brackets
at the end of some exercises contain hints for their solution.

The exposition in the book is practically self-contained. Although I had in mind
a reader familiar with the theory of finite-dimensional semisimple Lie algebras,
what would suffice for the most part is a knowledge of the elements of Lie algebras,
their enveloping algebras and representations. For example, the book of Humphreys
[1972] is more than sufficient.

One finds a rather extensive bibliography at the end of the book. I hope that
the collection of references to mathematical works in the theory of Kac-Moody
algebras is at least everywhere dense. This is not at all so in the case of the works
in physics. The choice of references in this case was rather arbitrary and often
depended on whether I had a copy of the paper or discussed it with the author.
The same should be said as regards the references to the works on the other classes
of infinite-dimensional Lie algebras.

0.9. This book is based on lectures given at MIT in 1978, 1980, and 1982, and at
the Colleége de France in 1981. I would like to thank those who attended for helpful
comments and corrections of the notes, in particular F. Arnold, R. Coley, R. Gross,
Z. Haddad, M. Haiman, G. Heckman, F. Levstein, A. Rocha, and T. Vongiouklis.
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Notational conventions

the set of integers
the set of non-negative integers

the set of rational numbers

the set of real numbers

the set of non-negative real numbers

the set of complex numbers

the set of non-zero complex numbers

modulus of z€ T

real and imaginary parts of z € T

forz€ TX:e%? =zand —7 < Imlogz < 7
=218z forac C,z€ TX

direct sum of vector spaces

sum of subspaces of a vector space
direct product of vector spaces

the linear k-span of S (k= Z,Z4, Q, R, or T)
tensor product of vector k-spaces over k (k = Q, R,
or T)

the dual of a vector k-space over k (k = Q, R, or T)
direct sum of n copies of the vector space T (n €
Z 4 U{o})

the identity operator on the n-dimensional vector
space V'

pairing between a vector space and its dual

square length of a vector u

cardinality of a set S

a set of representatives of cosets of an abelian group
P with respect to a subgroup @

means that a — b€ C.

universal enveloping algebra of a Lie algebra g

the augmentation ideal of U(g)

action of an element g of a Lie algebra or a group on
an element v of a module; all modules are assumed
to be left modules unless otherwise specified

= {g-v | g € G} the orbit of v under the action of
a group G

union of orbits of elements from a set V'
={9(v) |9 €BvEV}

linear span of the set {uv |u € U,v € V}, where U
and V arc subspaces of an algebra
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