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Two-Dimensional Information Theory and Coding

This self-contained introduction to two-dimensional (2-D) theory and coding provides
the key techniques for modelling data and estimating their information content. Through-
out, special emphasis is placed on applications to transmission, storage, compression,
and error protection of graphic information.

The book begins with a self-contained introduction to information theory, includ-
ing concepts of entropy and channel capacity, which requires minimal mathematical
background knowledge. It then introduces error-correcting codes, particularly Reed—
Solomon codes, the basic methods for error-correction, and codes applicable to data
organized in 2-D arrays. Common techniques for data compression, including com-
pression of 2-D data based on application of the basic source coding, are also covered,
together with an advanced chapter dedicated to 2-D constrained coding for storage
applications.

Numerous worked examples illustrate the theory, whilst end-of-chapter exercises test
the reader’s understanding, making this an ideal book for graduate students and also for
practitioners in the telecommunications and data-storage industries.

JoRN JUSTESEN is a Professor in the Department of Photonics Engineering at the
Technical University of Denmark (DTU), a position he has held since 1976. He has
previously held visiting positions at the Institute for Information Transmission Problems,
Moscow, and the University of Maryland, College Park.

SoREN FORCHHAMMER is an Associate Professor in the Department of Photonics Engi-
neering at DTU. He has previously held visiting positions at IBM Almaden Research
Center, California, and at McMaster University, Ontario.



Preface

Shannon’s paper from 1948, which presented information theory in a way that already
included most of the fundamental concepts, helped bring about a fundamental change in
electronic communication. Today digital formats have almost entirely replaced earlier
forms of signaling, and coding has become a universal feature of communication and
data storage.

Information theory has developed into a sophisticated mathematical discipline, and
at the same time it has almost disappeared from textbooks on digital communication
and coding methods. This book is a result of the authors’ desire to teach information
theory to students of electrical engineering and computer science, and to demonstrate
its continued relevance. We have also chosen to mix source coding and error-correcting
codes, since both are components of the systems we focus on.

Early attempts to apply information-theory concepts to a broad range of subjects
met with limited success. The development of the subject has mostly been fuelled by
the advances in design of transmitters and receivers for digital transmission such as
modem design and other related applications. However, more recently the extensive use
of digitized graphics has made possible a vast range of applications, and we have chosen
to draw most of our examples from this area.

The first five chapters of the book can be used for a one-semester course at the
advanced-undergraduate or beginning-graduate level. Chapter 6 serves as a transition
from the basic subjects to the more complex environments covered by current standards.
The last chapters introduce problems related to two-dimensional storage and other
current applications.

We would like to thank the graduate students and post-docs who have participated in
our work and contributed to figures in the book.

Soren Forchhammer and Jorn Justesen
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1.1

1.2

| }Introduction to informatiqn theory

Introduction

In this chapter we present some of the basic concepts of information theory. The situations
we have in mind involve the exchange of information through transmission and storage
media designed for that purpose. The information is represented in digital formats using
symbols and alphabets taken in a very broad sense. The deliberate choice of the way
information is represented, often referred to as coding, is an essential aspect of the
theory, and for many results it will be assumed that the user is free to choose a suitable
code.

We present the classical results of information theory, which were originally devel-
oped as a model of communication as it takes place over a telephone circuit or a similar
connection. However, we shall pay particular attention to two-dimensional (2-D) appli-
cations, and many examples are chosen from these areas. A huge amount of information
is exchanged in formats that are essentially 2-D, namely web-pages, graphic material,
etc. Such forms of communication typically have an extremely complex structure. The
term media is often used to indicate the structure of the message as well as the surround-
ing organization. Information theory is relevant for understanding the possibilities and
limitation of many aspects of 2-D media and one should not expect to be able to model
and analyze all aspects within a single approach.

Entropy of discrete sources

A discrete information source is a device or process that outputs symbols at discrete
instances from some finite alphabet A = {x,, x,, .. ., x,.}. We usually assume that a large
number of such symbols will have to be processed, and that they may be produced at
regular instances in time or read from various positions in the plane in some fashion.
The use of a large number of symbols allows us to describe the frequencies in terms of
a probability distribution.

A single symbol can be thought of as a random variable, X, with values from the
finite alphabet .A. We assume that all variables have the same probability distribution,
and the probability of x; is written as P(x;) or P[x = x;]. Itis often convenient to refer to
the probability distribution, P(X), of the variable as a vector of probabilities p y, where
the values are listed in some fixed order.
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As a measure of the amount of information provided by X we introduce the entropy
of a random variable.
Definition. The entropy of the variable X is

H(X) = E[log(1/P(X))] = — ) _ P(x)log P(x), (1.1)

where E[ ] indicates the expected value.

The word entropy (as well as the use of the letter /) has its historic origin in statistical
mechanics. The choice of the base for the logarithms is a matter of convention, but we
shall always use binary logarithms and refer to the amount of information as measured
in bits.

We note that

0 < H(X) <logr.

The entropy is always positive since each term is positive. The maximal value of
H(X) is reached when each value of X has probability 1/7 and the minimal when one
outcome has probability 1 (See Exercise 1.1). When r = 2™, the variable provides at
most m bits of information, which shows that the word bit in information theory is used
in a way that differs slightly from common technical terminology. If XV represents a
string of N symbols, each with the same alphabet and probability distribution, it follows
from (1.1) that the maximal entropy is N H, and that this maximum is reached when the
variables are independent. We refer to a source for which the outputs are independent as
a memoryless source, and if the probability distributions also are identical we describe
it as i.i.d. (independent identically distributed). In this case we say that the entropy of
the source is H bits/symbol.

Example 1.1 (Entropy of a binary source). For a binary memoryless source with prob-
ability distribution P = (p, 1 — p) we get the entropy (1.1) as

H(p) = —plogp — (1 — p)log(l — p), (1.2)

where H(p) is called the (binary) entropy function. The entropy function is symmetric
with respect to p = 1/2, and reaches its maximal value, 1, there. For small p, H
increases quickly with increasing p, and H(0.11) = 0.5.

We note that the same letter, H, is used to indicate the entropy of a random variable
and the value of the entropy function for a particular distribution, (p, 1 — p). We shall
use the same notation H(P) when P is a general discrete probability distribution.

Example 1.2 (Run-length coding). For a binary source with a small value of P(1) it
may be useful to segment a string of symbols into “runs” of Os ending with a 1. In this
way the source is converted into a memoryless source with alphabet {0, 1,2, ..., n},
where the symbols indicate the length of the segment. The value k represents the string
0“1, k < n. If runs of more than n Os are possible, the value k = n represents the string
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Figure 1.1. A binary image of a printed text.

0", i.e. a run of Os that is not terminated. Run-length coding may be used to code binary
images of text along the rows (Fig. 1.1).

For a pair of random variables, (X, Y), with values from finite alphabets A, =
{x1,x2,...,x.} and A, = {y1, y2. ..., ys}, the conditional probability of »j given x;
is P(yj|x;) = g;;. It is often convenient to refer to the conditional probability distribu-
tion as the matrix Q = P(Y|X) = [g;;]. The probability distribution of the variable, ¥,
then becomes

pr = pxQ,

where py and py are the distributions of X and Y, respectively.
Definition. The conditional entropy

H(Y|X) == P(xi, y)log P(y;|x;)
iJj

==Y P P(;lx)log P(y;lxi) (13)
i J

can be interpreted as the additional information provided by ¥ when X is known.

For any particular y;, the average value of P(y;|x;)log P(y;|x;) is given by
—P(y;)log P(y;). Since the function —u log u is concave (has negative second deriva-
tive), we can use Jensen’s inequality, which states that for such a function

S(E@)) = E[f(u)].

Thus, on applying Jensen’s inequality with # = p(y|x) to (1.3), it follows that the
entropy is never increased by conditioning, i.e. H(Y) > H(Y|X).
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For a string of variables, X, X5, ..., X,, we have

P(X,, X5, ..., X))
= P(X))P(X2| X)) P(X3| Xy, X2) ... P(X,| X1, Xa, ., X))

and thus, taking the expectation of the logarithm,

H(X, X2, ..., X,)
=HX)+ HX | X))+ -+ HX, | X1, Xo, .o Xph). (1.4)

This result is known as the chain rule, and expresses the total amount of information
as a sum of information contributions from variable X; when values of the previous
variables are known. When the variables are not independent, the chain rule is often
a valuable tool with which to decompose the probabilities and entropies of the entire
string of data into terms that are easier to analyze and calculate.

Example 1.3 (Entropy by the chain rule). If X takes values in A = {x, x3, x3, x4} with
probability distribution (1/4,1/4,1/3,1/6), we can of course calculate the entropy
directly from the definition. As an alternative, we can think of the outcome as a result of
first choosing a subset of two values, represented by the variable Y. We can then express
the entropy by the chain rule:

H(X) = H(Y)+ H(X|Y)= H(1/2)+ (1/2)H(1/2) + (1/2)H(1/3)
=3/24(og3 —2/3)/2=7/6+(1/2)log3.

Mutual information and discrete memoryless channels

For a pair of random variables, (X, Y), with values from finite alphabets A, =

{x1,x2,...,x,}and A, = {y1, y2, ..., ¥}, the mutual information is defined as
P(le)) { (P(ylx)”
I(Y;X)= Px, )l = FE|lo . 1.5
(Y;X) Ev (x,») 0g< POY) g P() (1.5)

The mutual information is a measure of the amount of information about X represented
by Y. It follows from the definition that the mutual information can be expressed in terms
of entropies as

I[(X;Y)= H(Y)— H(Y|X) = H(X) — H(X]|Y). (1.6)

The properties of the conditional entropy imply that the mutual information /(X; Y) >
0. It is 0 when X and Y are independent, and achieves the maximal value H(X) when
each value of X gives a unique value of Y.

It may also be noted that /(Y; X) = I(X; Y). The symmetry follows from rewriting
P(y|x)as P(y,x)/P(x)in the definition of /. This is an unexpected property since there
is often a causal relation between X and Y, and it is not possible to interchange cause
and effect.
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From the chain rule for entropy we get

[(Y;Xl,Xz, v wing X,,)
=1(Y; X))+ 1Y, Xo| X)) + - + 1Y X | Xy, Xoy oo X)), (1.7)
which we refer to as the chain rule for mutual information.
A discrete information channel is a model of communication where X and Y represent
the input and output variables, and the channel is defined by the conditional probability
matrix, Q = P(Y|X) = [g;;], which in this context is also called the transition matrix

of the channel. When the input distribution P(X) is given, we find the output distribu-
tion as

pr = pxQ.

Example 1.4 (The binary symmetric channel).  The single most important channel model
is the binary symmetric channel (BSC). This channel models a situation in which random
errors occur with probability p in binary data. For equally distributed inputs, the output
has the same distribution, and the mutual information may be found from (1.6) as

C=1(Y;X)=1-H(p), (1.8)

where H again indicates the binary entropy function. Thus C = 1 for p = 0 or 1, C has
minimal value 0 for p = 1/2, and C = 1/2 for p = 0.11.

For two variables we can combine (1.4) and (1.6) to get
H(X,Y)=HX)+ HY)— I(X;Y).

Mutual information cannot be increased by data processing. If Z is a variable that is
obtained by processing Y, but depends on X only through Y, we have from (1.7)

I(X;Z,Y)=1(X:Y)+ I(X: Z|Y) = [(X; 2) + (X Y|2).

Here I(X; Z|Y) = 0, since X and Z are independent given Y, and /(X;Y|Z) > 0.
Thus

[(X;Z) < I(X;Y). (1.9)

Source coding for discrete sources

In this section we demonstrate that the entropy of a message has a more operational
significance: if the entropy of the source is H, a message in the form of a string of N
symbols can, by suitable coding, be represented by about N H binary symbols. We refer
to such a process as source coding.
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1.4.1

The Kraft inequality

We shall prove the existence of efficient source codes by actually constructing some
codes that are important in applications. However, getting to these results requires some
intermediate steps.

A binary variable-length source code is described as a mapping from the source
alphabet A to a set of finite strings, C from the binary code alphabet, which we always
denote {0, 1}. Since we allow the strings in the code to have different lengths, it is
important that we can carry out the reverse mapping in a unique way. A simple way of
ensuring this property is to use a prefix code, a set of strings chosen in such a way that
no string is also the beginning (prefix) of another string. Thus, when the current string
belongs to C, we know that we have reached the end, and we can start processing the
following symbols as a new code string. In Example 1.5 an example of a simple prefix
code is given.

If ¢; is a string in C and /(c;) its length in binary symbols, the expected length of the
source code per source symbol is

N
L(C) = P(e)l(c).
i=1

If the set of lengths of the code is {/(c;)}, any prefix code must satisfy the following
important condition, known as the Kraft inequality:

I RE Y (1.10)

The code can be described as a binary search tree: starting from the root, two branches
are labelled 0 and 1, and each node is either a leaf that corresponds to the end of a string,
or a node that can be assumed to have two continuing branches. Let /,, be the maximal
length of a string. If a string has length /(c), it follows from the prefix condition that
none of the 2»~¢) extensions of this string are in the code. Also, two extensions of
different code strings are never equal, since this would violate the prefix condition. Thus
by summing over all codewords we get

Zzlm —lei) < Dl
i

and the inequality follows. It may further be proven that any uniquely decodable code
must satisfy (1.10) and that if this is the case there exists a prefix code with the
same set of code lengths. Thus restriction to prefix codes imposes no loss in coding
performance.

Example 1.5 (A simple code). The code {0, 10, 110, 111} is a prefix code for an alphabet
of four symbols. If the probability distribution of the source is (1/2, 1/4, 1/8, 1/8), the
average length of the code stringsis 1 x 1/2 + 2 x 1/4 + 3 x 1/4 =7/4, which is
also the entropy of the source.
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1.4.2

If all the numbers —log P(c;) were integers, we could choose these as the lengths
[(c;). In this way the Kraft inequality would be satisfied with equality, and furthermore

L=) Plelc)=~)_ P(c)log Ple;) = H(X)

and thus the expected code length would equal the entropy. Such a case is shown in
Example 1.5. However, in general we have to select code strings that only approximate
the optimal values. If we round —log P(c;) to the nearest larger integer [—log P(c;)],
the lengths satisfy the Kraft inequality, and by summing we get an upper bound on the
code lengths

I(c;) = [—log P(c;)] < —log P(c;) + 1. (1.11)

The difference between the entropy and the average code length may be evaluated
from

27k
HX)— L= ZP(C, [log<P( )> } = Zp(cf)lc’g(P(c‘))
< logZTl’ =<0,

where the inequalities are those established by Jensen and Kraft, respectively. This gives

HX)<L<HX)+1, (1.12)

where the right-hand side is given by taking the average of (1.11).

The loss due to the integer rounding may give a disappointing result when the coding is
done on single source symbols. However, if we apply the result to strings of N symbols,
we find an expected code length of at most N H + 1, and the result per source symbol
becomes at most H + 1/N. Thus, for sources with independent symbols, we can get an
expected code length close to the entropy by encoding sufficiently long strings of source
symbols.

Huffman coding

In this section we present a construction of a variable-length source code with mini-
mal expected code length. This method, Huffman coding, is a commonly used coding
technique. It is based on the following simple recursive procedure for binary codewords.

(1) Input: a list of symbols, S, and their probability distribution.

(2) Let the two smallest probabilities be p; and p; (maybe not unique).

(3) Assign these two symbols the same code string, o, followed by 0 and 1, respectively.
(4) Merge them into a single symbol, a;;, with probability p(a;;) = p; + p;.

(5) Repeat from Step 1 until only a single symbol is left.

The result of the procedure can be interpreted as a decision tree, where the code string
is obtained as the labels on the branches that lead to a leaf representing the symbol. It



