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Introduction

The last century has been characterized by a huge resource-intensive industrial development, particularly in
some Asian countries, spurred by the growth in the global population level, by a significant elongation of life
expectation, and by an overall increase in the standards characterizing the quality of life. These positive
aspects of our recent history have been combined however with the emergence of related problems such as
water stress, the environmental pollution, and the increase of CO, emissions into the atmosphere. These
negative aspects of the transformations which have been characterizing our recent progress have been very
much related to the momentum at which transformations themselves occurred and to the lack of innovations
and introduction of new strategies capable of both controlling and minimizing the relatively obvious negative
aspects of industrial development worldwide. A clear example is represented by the wastewater treatment
strategy. As illustrated in Figure 1, from 1556 until today, the same concept is basically present in various
wastewater-treatment systems.

The need to achieve a knowledge-intensive industrial development is nowadays well recognized. This will
permit the transition from an industrial system based on quantity to one based on quality. Human capital is
increasingly becoming the driving force behind this socio-economical transformation. The challenge of sustain-
able growth relies on the use of advanced technologies. Membrane technologies are in many fields already
recognized as amongst the best-available technologies (BATs) able to contribute to this process (Figure 2).

Process engineering is one of the disciplines most involved in the technological innovations necessary to face
the new problems characterizing the world today and in the future as well. Recently, the logic of process
intensification has been suggested as the best process engineering answer to the situation. It consists of
innovative equipment, design, and process development methods that are expected to bring substantal
improvements in chemical and any other manufacturing and processing, such as decreasing production costs,
equipment size, energy consumption, and waste generation, and improving remote control, information fluxes,
and process flexibility (Figure 3).

How to implement this strategy is, however, not obvious. An interesting and important case is the continuous
growth of modern membrane engineering whose basic aspects satisfy the requirements of process intensifica-
tion. Membrane operations, with their intrinsic characteristics of efficiency and operational simplicity, high
selectivity and permeability for the transport of specific components, compatibility between different mem-
brane operations in integrated systems, low energetic requirement, good stability under operating conditions
and environmental compatibility, easy control and scale-up, and large operational flexibility, represent an
interesting answer for the rationalization of chemical and any other industrial productions. Many membrane
operations are practically based on the same hardware (materials), only differing in their software (methods).
The traditonal membrane separation operations (reverse osmosis (RO), microfiltration (MF), ultrafiltration
(UF), and nanofiltration (NF), electrodialysis, pervaporation, etc.), already largely used in many different
applications, are today conducted with new membrane systems such as catalytic membrane reactors and
membrane contactors. At present, redesigning important industrial production cycles by combining various
membrane operations suitable for separation and conversion units, thus realizing highly integrated membrane
processes, is an attractive opportunity because of the synergic effects that can be attained.

In various fields, membrane operations are already dominant technologies. Interesting examples are in
seawater desalination (Figure 4); in wastewater treatment and reuse (Figure 5); and in artificial organs (Figure 6).

Xi
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Membrane technology, today a
dominant technology in effluents
treatment systems

Metallica, 1556

Sedimentation tanks
of a modern water-
treatment plant

Membrane bioreactors, one of the best available
technologies (BATs) for municipal and industrial
wastewater treatment

Figure 1 Wastewater-treatment technological approach in the past and today.
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Figure2 Current social-economical and technological contest driving the transition towards a knowledge-intensive system
to guarantee sustainable growth.

[tis interesting to consider that a large part of the membrane operations realized today at the industrial level
has been in existence in the biological system and in nature ever since life came into being. A major part of
biological systems is, in fact, well represented by membranes which operate molecular separations, chemical
transformation, molecular recognition, energy, mass and information transfer, etc. (Figure 7).

Some of these functions have been transferred at the industrial level with success. We are, however, far away
from being able to reproduce the complexity and efficiency of the biological membranes, to integrate the
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One vision of how a future plant employing process To design clean and very efficient
intensification may look (right) vs. a conventional plant (left). processes in refining and
petrochemicals

Operating with nonpolluting processes involving Process
intensification

Savings about 30% (Raw materials + Energy + Operating costs)

Figure 3 Process intensification strategy. Reproduced from Jean-Claude Charpentier, Modern Chemical Engineering in the
Framework of Globalization, Sustainability, and Technical Innovation, Ind. Eng. Chem. Res., Vol. 46, No. 11, 2007.

|

Figure 4 Membrane desalination plant. RO membrane units from El Paso Desalintion Plant, Texas: the site of the word’s
largest inland desalination plant (104 000 m® d ). Production costs for water are less than less than 0.36 $ m 2. From http://
www.epwu.org/167080115.

various functionalities, the capability to repair damage, and to maintain for a very long time their specific
activities, avoiding fouling problems, degradation of the various functions, and keeping the system alive.
Therefore, future generations of membrane scientists and engineers will have to address their attention to
understanding and reproducing the astonishing natural systems, which are at the basis of the life with which we
are familiar.

In Comprehensive Membrane Science and Engineering, we have tried to present and discuss the most relevant
results of membrane science and engineering reached during the last years.

Authors from all around the world, senior scientists, and PhD students have contributed to the four volumes
covering fundamental aspects of membrane preparations and characterization, their applications in various unit
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Figure 5 Submerged membrane module for wastewater treatment. From ZeeWeed®™ Submerged Membrane System, from
http://www.gewater.com.
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Figure 6 Membranes and membrane devices in biomedical applications. Modified from L. De Bartolo e E. Drioli.
“Membranes in artificial organs” In Biomedical and Health Research vol. 16: New Biomedical Materials — Basic and Applied
Studies Haris, P.l. and Chapman, D. (Eds.) IOS Press: Amsterdam/Berlin/Tokjo/Washington, (1998) pp. 167-181.

operations, from molecular separation to chemical transformations in membrane reactors, to the optimization of
mass and energy transfer in membrane contactors. Their application in strategic fields, including energy,
environment, biomedical, biotechnology, agro-food, and chemical manufacturing, has been highlighted.
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Figure 7 Biological membrane functions. From http://www.mcgraw-hill.it/.

Today, the possibility of redesigning a significant number of membrane operations, introduced via industrial
production, is becoming more and more attractive and realistic.

Strong efforts are however necessary for spreading the available knowledge in membrane engineering to the
public and for educating the younger generations more and more in the fundamentals and applications of these
creative, dynamic, and important disciplines.

With this text we have tried to contribute to these efforts.

In Volume 1, fundamental aspects of the transport phenomena, which characterize permeability and
selectivity in molecular separations based on polymeric, inorganic, and mixed-matrix membranes are discussed
together with the basic principles for their preparation in various possible configurations (flat sheets, tubular
fiber, microcapsules, etc.). The basic methodology generally utilized for their characterization is also discussed.

In Volume 2, the most relevant membrane operations such as the pressure-driven systems in liquid phase
(MF, UF, NF, and RO) and in gas phase (gas separation and vapor permeation) together with other separation
processes, such as dialysis, pervaporation, and electrochemical membrane systems, are analyzed and discussed
in their basic principles and applications.

In Volume 3, the recent interest in the combination of molecular separations with chemical transformations
largely present in biological systems is presented. It is important to recall that the industrial development of
these membrane reactors and catalytic membrane systems is not yet at the level of the more well-known
pressure-driven processes. However, the expectation of a significant fast growth of membrane reactors and
membrane bioreactors is very significant. Interesting success, in fact, can already be indicated by the recogni-
ton of the submerged membrane reactors such as BAT in municipal wastewater treatment and reuse. The
potentialities of this system in the area of bioengineering and biomedical applications are also very attractive,
where bioartificial organs, such as bioartificial liver and pancreas, are in some case already at clinical trial level.

Volume 4 is addressed to the description of relatively new membrane operations, where membranes are not
required to be selective. Their role is the optimization of the best mass and energy transfer between different
phases, acting as membrane contactors. Membrane distillation, membrane crystallizers, membrane emulsifiers,
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4.01.1 Definition and Basic
Principles

Membrane distillation (MD) 1is an emerging
nonisothermal separation technique that uses micro-
porous hydrophobic membrane in contact with an
aqueous heated solution on the one hand (feed or
retentate) and a condensing phase (permeate or dis-
tillate) on the other [1]. This technique belongs to the
class of membrane contactors in which a nonwetting
membrane does not act as a conventional barrier or
filter, but promotes mass and energy exchange
between two opposite interfaces according to princi-
ples of phase equilibrium.

In MD, the hydrophobic nature of the membrane
prevents the mass transfer in liquid phase and creates
a vapor—liquid interface at the entrance of each pore.
Here, volatle compounds (most commonly water)
diffuse and/or across the

evaporate, convect

membrane, and are condensed and/or removed on
the opposite side of the system.

The specific method used to activate the vapor
pressure gradient across the membrane characterizes
four main different MD configurations. In the most
common arrangement — known as direct contact
membrane distillation (DCMD) — the permeate side
of the membrane consists of a condensing fluid (often
pure water) that is directly in contact with the mem-
brane. Alternatively, the vaporized solvent can be
recovered on a condensing surface separated from
the membrane by an air gap (AGMD), vacuum
(VMD), or removed by a sweep gas (SGMD). All
these variants are schematized in Figure 1.

The selection of a specific configuration depends
upon feed and permeate compositions and character-
istics, as well as upon requested productivity. In
general, DCMD (cheaper and easier to operate) is

the best choice for applications in aqueous
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Figure 1 Scheme of the four most common membrane
distillation (MD) configurations: direct contact membrane
distillation (DCMD), air gap membrane distillation (AGMD),
sweep gas membrane distillation (SGMD), vacuum
membrane distillation (VMD).

environments, SGMD and VMD are used to remove
volatile organic components from aqueous solutions,
and AGMD (the most versatile) can be employed to
concentrate various nonvolatile solutes whenever
high fluxes are not required. Compared to reverse
osmosis (RO), MD does not suffer limitations of
concentration polarization and can therefore be
employed when high permeate recovery factors or
high retentate concentrations are requested.
Moreover, RO fluxes are drastically reduced at high
concentration due to the increase in osmotic pres-
sure, while MD fluxes
consequence of both reduction of the solution activ-
ity and increase of the solution viscosity.

With respect to traditional separation units and
methods of the chemical industry, MD offers several

slightly decrease as

important advantages. The nature of the driving
force, coupled with the hydro-repellent character of
the membrane, allow — at least theoretically — the
complete rejection of nonvolatile solutes such as
macromolecules, colloidal species, and ions. Lower
temperature gradients (2040°C) with respect to
those generally used in conventional distillation col-
umns are generally sufficient to establish a
transmembrane flux in the order of 1-20 kng h™',

with consequent reduction of energy costs and
mechanical requirements of the materials. Typical
feed temperatures vary in the range of 40-60°C
and permit the efficient recycle of low-grade or
waste heat streams, as well as the use of alternative
energy sources (solar, wind, or geothermal) [2]. In
addition, the possibility to use plastic equipments
reduces or avoids erosion problems. On the other
hand, MD suffers from some drawbacks. MD fluxes
of permeate are usually lower than in RO, and a
higher energy consumption is necessary to drive
this thermal membrane operation. Moreover, only a
restricted class of polymeric materials present a suf-
ficient chemical resistance and operational stability
and, despite the decreasing trend of membrane costs,
commercial modules are sull quite expensive.

4.01.2 Membrane Materials

When producing microporous membranes for MD
operations, the selection of the material is mainly
driven by the necessity to achieve a high chemical
and thermal stability, high hydrophobicity, and poros-
ity. Typology and main characteristics of the polymers
frequently used as starting material for microporous
hydrophobic membranes are given in Table 1.

More recently, inorganic (stainless steel) mem-
branes typically used in microfiltration, modified by
depositing on their surface a very thin film of silicone
compounds, have been tested for MD operations [3].
Microporous polymeric membranes are prepared by
various techniques: sintering, stretching, and phase
inversion.

Sintering is a simple technique: a powder of poly-
meric particles is pressed into a film or plate and
sintered to just below the melting point [4]. The
process yields a microporous structure having a por-
osity in the range of 1040% and rather irregular
pore sizes, ranging from 0.2 to 20 pm (Figure 2(a)).

Microporous membranes can also be prepared by
stretching a homogeneous polymer film made from a
partially crystalline material [5]. Films are obtained
by extrusion of a polymeric powder at temperature
close to the melting point, coupled with a rapid
drawdown. Crystallites in the polymers are aligned
in the direction of drawing. After annealing and cool-
ing, mechanical stress is applied perpendicularly to
the direction of drawing. This manufacturing process
gives a relatively uniform porous structure with
pore-size distribution in the range of 0.2-20 pm and
porosity of about 90% (Figure 2(b)).



