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PREFACE

ADVANCED ENGINEERING MATHEMATICS (AEM), 8th Edition (New York: J. Wiley
and Sons, Inc., 1999) introduces students of engineering, physics, mathematics, and computer
science to those areas of mathematics which from a modern viewpoint are most important in
connection with practical problems. The book consists of the following independent parts;

A Ordinary Differential Equations (Chaps. 1-5)

B Linear Algebra, Vector Calculus (Chaps. 6-9)

C Fourier Analysis, Partial Differential Equations (Chaps. 10, 11)
D Complex Analysis (Chaps. 12-16)

E Numerical Methods (Chaps. 17-19)

F Optimization, Graphs (Chaps. 20, 21)

G Probability, Statistics (Chaps. 22, 23)

AEM includes a problem set after each section of every chapter. These problem sets consist of
about 4500 problems and team projects.

This Student Solutions Manual will enhance the effectiveness of AEM. The manual contains
worked-out solutions and helpful suggestions to carefully selected odd-numbered problems (to
which Appendix 2 of AEM gives only the final answers). The solutions discussed in this Manual
illustrate the basic ideas, techniques, and applications of the material in the text. This will provide a
representative cross-section of the main topics in the book as a learning environment for the student.

The Manual may give help in working assignments, in clarifying conceptual and technical
difficulties, and in developing skills. It can also be used in reviewing the course material, in studying
for exams, and for self-study.

The following two facts are important to fully understanding the role and character of this
Manual;

1. Whereas the book AEM itself gives only answers to (odd-numbered) problems (in Appendix
2), this Manual provides complete solutions with all the conceptual and technical details,
considered from a practical point of view.

2. In addition to those problem sets, AEM contains numerous examples in the text. It is true
that these examples include worked-out solutions, but we wish to emphasize very distinctly that the
presentation in this Manual is much more detailed and leisurely and of a substantially lower level
than the level of those examples in AEM. Thus, worked-out examples in the book and worked-out
problems in this Manual belong to two different categories of objects designed to enhance
understanding, intuition, and skill in two different ways and on two different levels.

For best results in using this Manual follow these rules.

RULE 1. First try to solve your problem without help. A solution obtained completely by
yourself will be much more valuable to you than one obtained with outside help. The more you have
to struggle, the greater will be your gain in knowledge, skill, and self-confidence. It is of minor
importance whether your way of solution is shortest or most elegant; essential is that you obtain a
solution at all.

RULE 2. Look at worked-out examples in the text. Find out whether one of them is similar to
your problem or, at least, one or another idea in an example might be useful in solving your problem.



iv Preface

RULE 3. Use this Manual stepwise. That is, if you reach an impasse, find out from the Manual
the next step of the solution, without looking at the further steps. This act of self-discipline is part of
a process of maturing, involving great rewards for you.

RULE 4. Analyze your work critically. Find reasons for the difficulties in solving the problem,
which you wish to overcome, such as lack of understanding of word problems in general, difficulties
in grasping the meaning of a concept or a theorem needed, insufficient insight into the general idea
on which a solution method is based, deficiencies in differentiation or integration, lack of technical
skill in algebraic manipulations, and so on.

RULE 5. Find a better method. Try to design a solution method that is shorter than that given
in this Manual, more elegant, logically more appealing to you, or more adequate from the viewpoint
of applications.

Organize your worksheets as clearly and legibly as you can. Use letter size paper, don’t use
little scraps of paper. You will be surprised to see how improvement in form will entail
improvement in content.

Best wishes for success and fun in using this Manual.

Acknowledgement: The authors wish to thank Professor E. J. Norminton for various valuable
suggestions as well as for his great help in the design of this book.

Herbert Kreyszig
and
Erwin Kreyszig
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PART A. ORDINARY DIFFERENTIAL
EQUATIONS

CHAPTER 1. First-Order Differential Equations

Sec.1.1  Basic Concepts and Ideas
Comment on (5). y = cx—c?, hencey’ = c,andy? —xy' +y = c? —xc + (cx—c?) = 0.
Problem Set 1.1. Page 8

1. Calculus. This is a problem of calculus, namely, to integrate x?, giving +x* + ¢, where the constant of
integration c is arbitrary. This is essential. It means that the differential equation y' = x? has infinitely
many solutions, each of these cubical parabolas corresponding to a certain value of c. Sketch some of
them.

13. Initial value problem. y' = —2ce™2* by differentiation. Hence the left side becomes
Yy +2y = -2ce** +2(ce™>* + 1.4) = 2.8.

This verifies the given solution y = ce™2* + 1.4. For x = 0 you have ¢° = 1 and thus y(0) = ¢ + 1.4, which
is required to be equal to 1.0. Hence 1.0 = c + 1.4,c = —0.4, and the answer is y = —0.4¢72* + 1.4.

23. Falling body. s = gr3/2 = 100 [m]. Here g = 9.80 m/sec? since s is measured in meters. Using s = 100

and solving for ¢ gives
’ 100 , 1
t= g—/2 =10 ﬁ = 4.52 [sec].

The second result, 6.389 sec, is less than twice the first because the motion is accelerated, the velocity
increases.

Sec. 1.2 Geometrical Meaning of y'= f(x,y). Direction Fields
Problem Set 1.2. Page 12

1. Calculus. Note that the solution curves are not congruent because c is a factor, not an additive constant
(as, for instance, in Prob. 5).

5. Verification of solution. Geometrically, the solution curves are obtained from each other by translations
in the y-direction; they are congruent because c is an additive constant.

7. Verification of solution. At each point (x, y) the tangent direction of the solution is —x/y, hence
perpendicular to the slope y/x of the ray from (0, 0) to (x,y), suggesting that the solutions are concentric
circles about the origin. You can prove this by calculus, as follows. Multiply the equation by y, obtaining
yy' = —x. Then integrate on both sides with respect to x. This gives

%y2=-%x2+c or y*+x?=2c

15. Initial value problem. The idea from calculus just applied in Prob. 7 here gives (9/2)y? + 2x2 = c or
4x? + 9y? = 2c; these are the ellipses x2/9 + y/4 = c/18.
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17. Initial value problem. In this section the usual notation is (2), that is, y' = f{x,y), and the direction field
lies in the xy-plane. In Prob. 17 the equation is v' = f{t,v) = g — bv?/m. Hence the direction field lies in
the tv-plane. With m = 1 and b = 1 the equation becomes v' = g — v2. Then v = 3.13 gives
g —v? = 9.80 — 3.132 = 0, approximately. The differential equation now shows that v' must be identically
zero. Conclude that v = 3.13 must be a solution. For v < 3.13 you have v' > 0 (increasing curves) and for
v > 3.13 you have v' < 0 (decreasing curves). Note that the isoclines are the horizontal parallel straight
lines g — v = const, thus v = const.

Sec. 1.3  Separable Differential Equations
Problem Set 1.3. Page 18

3. General solution by separation. Dividing by the right side gives
¥ dy
—_— 1 —_—
14001, o 15001y &)

Now integrate. This is one of the more important integrals; set v = 0.1y to get y = 10 v, dy = 10 dv, and
from (A),

10dv/(1 +v?) = dx, integrated 10arctany = x+ C.
Recalling that v = 0.1y gives 10arctan 0.1y = x + C. This implies
' y = 10tan (0.1(x+ C)) = 10tan (0.1x +¢), c=0.1C.

15. Initial value problem. Separate variables and integrate on both sides (by parts on the right) to get
dyly* = 2(x+ 1)e*dx, ~—1/y=(-2x-4)e*+c.
Multiply by —1 and take the reciprocal,
y=1[(2x+4)e*-c].
From the initial condition y(0) = 1/6 obtain by setting x = 0
1/6 = y(0) = 1/(4—c), hence 6=4-c, c=-2.
Inserting this into y gives the answer.

23. Initial value problem. Dividing the given equation by x? and setting y/x = u, hence y = xu and
Yy = u+xu', gives
/x)y' = u(u+xu') = 2u* +4.
Subtracting u? on both sides gives xuu' = u? + 4. Separate variables, then multiply both sides by 2, and
integrate with respect to x on both sides,
2udul/(u® +4) = 2dx/x, In(W?+4)=In(x?)+C, u*+4=cx2

Solving for u? and taking roots gives y/x =u = JexT=4 | so that

y=tix = Jer 4.
From this and the initial condition,

y2)=4=J16c-16 =4fc—1, c-1=1, c=2.

This gives the answer in Appendix 2.

26. Team Project. (b) In finding a differential equation you always have to get rid of the arbitrary constant c.
For xy = c this is very simple because this equation is solved for ¢ (differentiate this equation implicitly
with respect to x); in other cases it is usually best to first solve algebraically for c.

(d) This orthogonality condition is usually considered in calculus. You will need it again in Sec. 1.8.
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27. CAS Project. This integral (the error function, except for a constant factor; see (35) in Appendix A3.1) is
important in heat conduction (see Sec. 11.6). A similar integral is basic in statistics (see Sec. 22.8).

Sec. 1.4 Modeling: Separable Equations
Problem Set 1.4. Page 23

1. Exponential growth. Let y(0) = y, be the initial amount at t = 0. The model equation y' = ky has the
solution y = ce*’. For the given initial amount y, this becomes y = y,e*'. For ¢ = 1 (1 day) this gives
y(1) = y, e*. By assumption this is twice the initial amount (doubling in 1 day). Hence yoe* = 2y,. Divide
this by y, to get e¥ = 2. After 3 days you have y(3) = yoe3* = y,-23, where we used e® = (e?)5.
Similarly for 1 week (¢ = 7).

11. Sugar inversion. y' = ky, y(t) = 0.01¢*' from the first condition and y(4) = 0.01e** = 1/300 = 0.01/3
from the second. Hence e** = 1/3, k = 1/41n (1/3) = -0.275.

15. Curves (ellipses) From calculus you know that the slope of the tangent of a curve y = y(x) is the
derivative y'(x). From the given data you thus obtain immediately the differential equation y' = —4x/y.
Solve it by separation of variables (multiply by y),

ydy = -4 xdx, y*2=-2x>+c¢, y*4+x*=cl2.
For instance, ¢ = 2 gives the ellipse with semi-axes 1 (in the x-direction) and 2 (in the y-direction). Sketch
this ellipse and some of the others.

Sec. 1.5 Exact Differential Equations. Integrating Factors

Example 3. A nonexact equation. You can write the given equation as y' = y/x. Separate variables, obtaining
dyly =dx/x,lny=Inx+7T,y = cx.

Problem Set 1.5. Page 31

17. Test for exactness. Initial value problem. Exactness is seen from
I M=L (x+1)e-e) = -2,

dy oy
%N = % (—xe?) =—e?,

where the minus sign in the second line results from taking the dy-term to the left in order to have the
standard form of the equation. You see that the equation is exact. Integrating M with respect to x gives

u = xe* — xe” + k(y) with arbitrary k(y). Differentiating this with respect to y and equating the result to N
gives —xe” + k'(y) = —xe”, hence k'(y) = 0 and k = const. This shows that a general solution is

u = xe* — xe* = c. Because of the initial condition set x = 1 and y = 0, obtaining 4 = e — 1. This gives the
answer u = xe* — xe’ = e—1.

23. Several integrating factors. From this problem you can learn that if an equation has an integrating factor,
it has many such factors, giving essentially the same (implicit) general solutien. Taking F =y, you obtain
the equation y?dx + 2xydy = 0. To check exactness, calculate-%—(yz) = 2yand -£(2xy) = 2y, which
proves exactness. Integrating y? with respect to x gives xy? + k(y). Differentiating this with respect to y
and equating the result to 2xy, you obtain for k(y) the condition 2xy + k'(y) = 2xy, k'(y) = 0,

k(y) = const. The solution is xy? = const.
Choosing F = xy* as an integrating factor gives the exact equation xy* dx + 2x2y*dy = 0. Proceeding
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as before, you obtain
u = (12)x2y* + k(y), 22y + K'(y) = 222y},  u=(12)x%y* = C,
which implies xy? = c, as before.
25. Integrating factor. Pdx + Qdy = 0 in (12) is the nonexact equation. FPdx + FQdy = 0 is the exact

equation obtained by multiplying with an integrating factor F. Hence FP = M and FQ = N play the role
of M and N in an exact equation. Accordingly, the exactness condition is 8(FP)/dy = 8(FQ)/0x. In the
present problem,

2 (FP) = £-(e"siny) = e*cos ,

%(FQ) = %(e‘ cosy) = e*cosy,
which shows exactness. Integrating FP with respect to x gives u = e*sin y + k(y). To determine k(y),
differentiate « with respect to y and equate the result to FQ (which now plays the role of N). This gives
e*cosy+k'(y) = e*cos y, k() =0, k(y) = const.
Hence the answer is
u = e*siny = ¢ = const.

Note that in the present case you can solve this for y; this gives

y = arcsin (ce™).

Sec. 1.6 Linear Differential Equations. Bernoulli Equation

Example 2. The integral can be solved by integration by parts or more simply by “undetermined

coefficients”, that is, by setting
Ie°~°5' costdt = e"%*'(Acost+ Bsin1)

»

and differentiating on both sides. This gives
e%%'cos t = €%%5770.05 (A cos t+ B sin ) — A sin t + B cos t].
Now equate the coefficients of sin ¢ and cos ¢ on both sides. The sine terms give 0 = 0.05B — A , hence
A = 0.05B. The cosine terms give
1 = 0.05A + B = 0.05%B + B,

hence B = 1/1.0025 = 0.997506 and A = 0.05B = 0.049875. Multiplying A and B by 50 (the factor that
we did not carry along) gives a and b in Example 2. The integrals in Example 3 can be handled similarly.

Problem Set 1.6. Page 38.

7. General solution. Multiplying the given equation by e**, you obtain

17.

O +ky)ets = (ye*)' = etre™t* = 1
and by integration, ye** = x + c. Division by e** gives the solution y = (x + c)e™**. Note that in (4) you
have the integral of e**e~** = 1, which has the value x + c, so that the use of (4) is very simple, too.

Initial value problem. In any case the first task is to write the equation in the form (1). In the present
problem,

y' —2 y tanh 2x = -2 tanh 2x.
In (4) you thus have p = -2 tanh 2x = —(In cosh 2x)’. Hence the integral 4 of p is A =—In (cosh 2x). In
(4) you need e™* = cosh 2x and under the integral sign e* = 1/(cosh 2x). Since r = -2 tanh 2x, the
integrand is
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— 2tanh 2x/cosh 2x = —2sinh 2x/(cosh 2x)? = (1/cosh 2x)'.

Hence the integral equals 1/(cosh 2x) + c. Multiplying this by e™ = cosh 2x gives the general solution
y = 1+ ¢ cosh 2x. From this and the initial condition, y(0) = 1 +c = 4, c = 3. Answer:y = 1 + 3 cosh 2x.

33. Bernoulli equation. This is a Bernoulli equation with a = 4. Hence you have to set u = 1/y. By
differentiation (chain rule!) u’ = —3y~*y’. This suggests multiplying the given equation by -3y, obtaining
=3y Yy —-y3=-1+2
The first term is 4’ and the second is —u; thus 4’ — u = 2x — 1. Formula (4) with u instead of y gives the
general solution 4 = ce* — 2x — 1. Hence the answer is )
y=u'®=(ce-2x-1)"13,

Sec. 1.7 Modeling: Electric Circuits

Example 1 Step 5. For the idea of evaluating the integral by undetermined coefficients, see this Manual, Sec.
1.6.

Problem Set 1.7. Page 47

7. Choice of L. This is a problem on the exponential approach to the limit, as it also occurs in various other
applications. For constant E = E, the model of the circuit is /' + (R/L)I = E,/L. The initial condition is
1(0) = 0 since the current is supposed to start from zero. The general solution and the particular solution

. are

I =ceRiL 4 %9-, I= ER"-(I —e~RiL),

25% of the final value of I is reached if the exponential term has the value 0.75, that is,
exp (—=Rt/L) = 0.75. With R = 1000, ¢ = 1/10000 by taking logarithms you obtain
0.1/L = In (1/0.75) = 0.2877, so that L = 0.1/0.2877 = 0.3476.

9. RL-circuit. The two cases can first be handled jointly; the difference will appear in evaluating the
integral. The model is I' + RI/L = e~*/L. You can solve it by (4) in Sec. 1.6. Since p = R/L, integration
gives h = Rt/L. Hence e™* = e R?L and e* = ¢R"L, This yields the integrand
(1/L)exp (Rt/L)exp (-t) = (1/L)exp [(R/L — 1){]. If RIL — 1 = O, the integrand is 1/L, and the integral is
t/L + c. This is Case (b), the solution being

I = (t/L+c)e”.
If R/L — 1 is not zero, you have to integrate an exponential function, obtaining exp [(R/L - 1)fJ/(R - L).
This is Case (a), the solution being

+ceRiL,

e—l
I=x-1
where the first term became simple because exp (—h)exp & = 1. The figure shows the two solutions for

I =0,L =1and (a) R = 3, (b) R = 1. Find out which curve corresponds to (a) and which to (b). Sketch
tpe solutions when L = 1, R = 3, and /, = 1, and compare.
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Section 1.7. Problem 9. Solutions in both cases

19. Periodic electromotive forces are particularly important in practice. The simplest way of obtaining

steady-state solutions is by substituting an expression of the form of the electromotive force with
undetermined coefficients and determining the latter by equating corresponding coefficients on both sides
of the equation. In the problem, the model equation, divided by a common factor 25, is

20' + Q = 4 cos 2t + sin 2t + 8 cos 4t + sin 4.
The right side suggests setting
Q = acos 2t + b sin 2t + ¢ cos 4t + k sin 4t
By differentiation and multiplication by 2,
2Q0' = —4asin2t+4bcos2t—8csindt+ 8k cos 4t

Hence you must have a + 4b = 4 (from cos 2t), —-4a + b = 1 (from sin 2¢). The solutionisa = 0, b = 1.
Similarly, ¢ + 8 k = 8 (from cos 4¢), —8 ¢ + k = 1 (from sin 4¢). The solution is ¢ = 0, kK = 1. Hence there
are no cosine terms. The answer is Q = sin 2¢ + sin 4z. This “method of undetermined coefficients” will be
very important in connection with vibrations in the next chapter.

Sec. 1.8 Orthogonal Trajectories of Curves. Optional

Problem Set 1.8. Page 51

3. Family of curves. cosh (x — ¢) is a translate of cosh x through the distance c to the right (x—c = O or

21.

x = c corresponds to the lowest point of the curve, which is now at x = ¢, y = 1). Adding —c moves the
translated curve down. Thus, y = cosh (x — ¢) —c. If x = ¢, then y = —c + 1; this is the lowest point of the
corresponding curve. Make a sketch.

. Differential equation of a family of curves. The differential equation to be derived must not contain c.

This is quite essential. You accomplish this as follows. Solve the given equation algebraically for ¢2,

cA(x2-1)+y* =0, —-ct =y*(x2-1).
Differentiation with respect to x gives (chain rule!)
0=2w __ ¥ 5

-1 (2-12

Dividing by 2y and solving algebraically for y’ yields the answer shown in Appendix 2 of the text.

Orthogonal trajectories derive their importance from applications in electrostatics, fluid flow, heat flow,
and so on. The given curves xy = c are the familiar hyperbolas with the coordinate axes as asymptotes (the
solid curves in Fig. 30 of the text). Differentiation with respect to x gives their differential equation
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y+xy' = 0ory' = <y/x. Formula (2) in Sec. 1.8 gives the differential equation of the trajectories

y' = +x/y oryy' = x. By integration on both sides you obtain y2/2 = x2/2 + C or x2 — y? = c*, the dashed
hyperbolas in Fig. 30, whose asymptotes are y = x and y = —x (the latter in the quadrants not shown in the
figure).

Sec. 19 Existence and Uniqueness of Solutions. Picard Iteration
Problem Set 1.9. Page 58
1. No solution. Obtain the general solution by separating variables.

3. Vertical strip. a is the smaller of the numbers a and b/K. Since X is constant and you can now choose b
as large as you please (there is no restriction in the y-direction), the smaller number is a, as claimed.

7. Linear differential equation. y' = f{x,y) = r— p(x) y shows that the continuity of r and p makes both f
and gfldy = —p(x) continuous.

11. Picard iteration. Proof by induction. You have to show thaty, = 1+ x + ... + x"/n\. This is true forn = 0
because y, = y(0) = 1; see (6) in Sec. 1.9. Since y' = f{x,y) = y, the integrand in (6) is y,—, (f). Make the
induction hypothesis that this equals 1 + ¢ + ... + £""!/(n — 1)! According to (6) you have to integrate this
expression from O to x, obtaining x + x2/2 + ... + x"/n! (because (n — 1)!n = n!), and to add y, = 1. This
gives y,, the next partial sum of the Maclaurin series of e*, and completes the proof.

13. Picard iteration. y' = x+y, y, = -1.
- . = - * :
Yo=-1 +Io(r+y,,_,(t))dt 1+ joy,_‘(r)du 5—2 ,

thus

y|=—1—x+“21.
yz=—l—x—32£+161+321=—1—x+363—, etc.
6

4

2

0 1 2 /Y / 4 5

2

-4

Section 1.9. Problem 13. Picard approximations of the solutiony = -1 - x



CHAPTER 2. Linear Differential Equations
of Second and Higher Order

Sec. 2.1 Homogeneous Linear Equations of Second Order
Problem Set 2.1. Page 71

7. Reduction to first order. y” + e*y” = 0 is of the form F(y,y',y") = 0, so that you can setz = y' and
y" = (dz/dy) z (see Prob. 2). Substitution of this and division by z gives dz/dy + e’z* = 0. By separation of
variables, dz/z* = —e” dy. Integration on both sides and multiplication by —1 gives 1/z = e’ + ¢,. Now by
calculus, z = dy/dx implies dx/dy = 1/z. Hence you can separate again and then integrate,

dx = (e’ +c;)dy
x=e +c y+c,.
13. Motion. Expressing the given data in formulas gives y'y" = 1, y(0) = 2, y'(0) = 2. By integration,
y?/2 = t+C, hencey = [J2t+c, , where c, = 2C. If you wish, you can now use the second initial

condition to get y'(0) = Jc; = 2, hencec, = 4, so thaty’ = J21+4. By another integration and the use
of the first initial condition you obtain

=%(2t+4)3’2+(:2, y(0)=‘;—43/2+(:2=%+(32=2, C2=—%.
This gives the answer

-1 w_2
y—3(2t+4) 3

Sec. 2.2 Second-Order Homogeneous Equations with Constant Coefficients
Problem Set 2.2. Page 75

7. General solution. Problems 1-9 amount to solving a quadratic equation (3), the characteristic equation.
Observe that the solutions (4) refer to the case that y" has the coefficient 1. For the present equation you
can write y" — (30/9)y' + (25/9) y = 0. Then the radicand in (4) is 225/81 — 25/9 = 0, so that you have a
double root 15/9 = 5/3. The corresponding general solution is y = (¢; + ¢, x) exp (5x/3).

15. Initial value problem. To solve an initial value problem, first determine a general solution by solving the
characteristic equation A2 + 2.24 + 1.17 = 0. The roots (4) are —1.3 and —0.9. The corresponding general

solution is
y=c e 13% + c, e 09x, (a)
Because of the second initial condition you also need the derivative
y =-13c,e'3* - 0.9c, e~ (b)

In (a) and (b) you now put x = 0 and equate the result to 2 and —2.6, respectively (the given initial values),
that is,

C|+C2=2, —1.3C|—0.902=—2.6.
The solution is ¢; = 2, ¢, = 0, so that you get the answer y = 2¢~'3*, Note that, in general, both solutions
of a basis of solutions would appear; in that sense our present initial conditions are special.

21. Linear independence and dependence. This problem is typical of cases where one must use functional
relations to prove linear dependence. Namely, In x and In (x*) = 41n x are linearly dependent on any
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interval of the positive semi-axis. Graphs may help when the functions are very complicated and
transformations are not so obvious as in this problem; then you may find out whether the curves of the
functions look “proportional”.

Sec. 2.3 Case of Complex Roots. Complex Exponential Function
Problem Set 2.3. Page 80

5. General solution. y” + 1.6 y' + 0.64 y = 0 (the given equation divided by 2.5) has the characteristic
equation A2 + 1.6 4 + 0.64 = (A + 0.8)? = 0 with the double root —0.8. This is Case II, with the general
solution as given in Appendix 2.

7. General solution. Division by 16 gives y"” — 0.5y’ + 0.3125y = 0. From (3) you thus obtain the roots

A, =025+054/025-125 =025+05i and A, =025-0.5i

Note that if an equation (with real coefficients) has a complex root, the conjugate of the root must also be
a root. The real part is 0.25 and gives the exponential function exp (0.25x). The imaginary parts are 0.5
and -0.5 and give the cosine and sine terms. Together,

y = €%5%(A cos 0.5x + B sin 0.5x),
which is oscillating with an increasing maximum amplitude.

21. Boundary value problems will be less important to us than initial value problems. The determination of a
particular solution by using given boundary conditions is similar to that for an initial value problem. In the
present problem the characteristic equation is A2 + 24 + 2 = 0. Its roots are

h|=—1+41—2=—]+iand 12_—‘—1—!..
This gives the real general solution
y = e¢*(A cos x + B sin x).

On the left boundary, y(0) = A = 1. On the right boundary, y(7/2) = B exp (-n/2) = 0, hence B = 0.
Hence the answerisy = e cos x .

Sec. 2.4 Differential Operators. Optional
Problem Set 2.4. Page 83

3. Differential operators. (D — 2) (D + 1) e2* = 0 because
(D-2)e* =2e** -2¢%* = 0.
For the second of the four given functions you first have
(D-2)xe?* = e¥* +2xe?* —2xe? = e¥*
and then
(D+1)e* = 2e% +e2* = 3¢?*,
Similarly for the other functions.

13. General solution. The optional Sec. 2.4 introduces to the operator notation and shows how it can be
applied to linear differential equations with constant coefficients. The facts considered are essentially as
before, merely the notation changes. The given equation, divided by 10, is

(D*+1.2D+0.36)y = (D+0.6)%y = 0.

It shows that the characteristic equation has the double root —0.6, so that the corresponding general
solution is
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y = (c; + c3x) 70~

Sec.2.5 Modeling: Free Oscillations (Mass-Spring Systems)
Problem Set 2.5. Page 90

1. Harmonic oscillations. Formula (4*) gives a better impression than a sum of cosine and sine terms
because the maximum amplitude C and phase shift & readily characterize the harmonic oscillation. The
result follows by direct calculation, starting from the general solution

y=Acoswyt+Bsinwyt
and using the initial conditions, first y(0) = A = y, and then
y' = asineterm+ @oBcos wo?,  y'(0) = woB = vy,
where v suggests ‘velocity’. This gives the particular solution
Y = YoC0S @gt + (vo/wg) sin @y 2.
Accordingly, in (4%),
C= y02+(—v—°-)2, tan § = Y%
®o Yo
The derivation of (4*) suggested in the text begins with
¥(t) = C cos (wot — ) = C(cos wyt cos & + sin wgt sin &)
= C cos 6 cos wyt + C sin 6 sin wyt = A cos @yt + B sin wyt.
By comparing you see that
A? + B? = C2cos?8 + C?sin?6 = C?
and

i B
R o

7. Determination of frequencies. ®, = ,/klm ; see (4). Hence the frequencies are

) 1 [k 1 [k
2 =~ 3w ﬁ'j; ;
respectively. To prove k = k; + k5, fix s = 54 (for instance, sy = 1), choose W, = ks and W, = k,s0,
and add (couple the two systems), where k is the spring constant of the two systems
W=W,+W, = (k) +k3)s0 = ks
combined.

15. Underdamping. Equate the derivative to zero.

Sec. 2.6 Euler-Cauchy Equation
Problem Set 2.6. Page 96

3. General solution. Problems 2-13 are solved as explained in the text by determining the roots of the
auxiliary equation (3). This is similar to the method for constant-coefficient equations in Secs. 2.2 and 2.3,
but note well that the linear term in (3) is (@ — 1) m, not am. Thus in Prob. 3 you have

m(m-1)-20=m?-m-20=0.
The roots are —4 and 5. Hence a general solution is y = ¢; x™* + ¢, x° . The value x = 0 is excluded.
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Similarly, the case of a double root of (3) gives a logarithmic term [see (7) in Sec. 2.6] and x = 0 and all
negative x must be excluded.

7. Pure imaginary roots. The auxiliary equation is m2 + 1 = 0. It has the roots i = y=1 and —i . Hence in-
(8) of Sec, 2.6 you have u = O (the real part of the roots is zero) and v = 1, so that (8) becomes simply
y = Acos (In x) + Bsin (In x).

15. Initial value problems for Euler-Cauchy equations are solved as for constant-coefficient equations by first
determining a general solution. The initial values must not be given at 0, where the coefficients of (1),
written in standard form

y”+§y’+:%y= 0,
become infinite, but must refer to some other point, for instance, to x = 1. In Prob. 15 the auxiliary
equation is
4m(m-1)+24m+25=0 or m*+5m+6.25=0.
It has the double root —2.5. The corresponding general solution (7), Sec. 2.6, is
y = (c; +¢; Inx)x25,

The first initial condition gives y(1) = ¢, = 2. For the second initial condition y'(1) = —6 you need the
derivative. With ¢; = 2 the latter is

y = ixz-x'“ -2.5(2+c,In x)x733,
Setting x = 1, you thus obtain (since In 1 = 0)
Y(1)=c,-5=-6, hence c,=-1.

The figure shows the particular solution obtained, y = (2 — In x) x™25. For x > 7.4 the logarithm is greater
than 2, so that for these x the solution becomes negative, but this can hardly be seen from the figure
because the x-factor is very small in absolute value when x is large.
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Section 2.6. Problem 15. Particular solution satisfying y(1) = 2, y'(1) = -6

Sec.2.7 Existence and Uniqueness Theory. Wronskian

The Wronskian W(y,, y,) of two solutions y, and y, of a differential equation is defined by (5),
Sec. 2.7. It is conveniently written as a second-order determinant (but this is not essential for using
it; you need not be familiar with determinants here). It serves for checking linear independence or
dependence, which is important in obtaining bases of solutions. The latter are needed, for instance,
in connection with initial value problems, where a single solution will generally not be sufficient
for satisfying two given initial conditions. Of course, two functions are linearly independent if and
only if their quotient is not constant. To check this, you would not need Wronskians, but we



