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Abstract Crystallization analysis fractionation (Crystaf) and temperature rising elution
fractionation (Tref) are analytical techniques for determining the distribution of chain
crystallizabilities of semicrystalline polymers. These techniques fractionate polymer
chains on the basis of the differences in their chain microstructures that affect their crys-
tallizabilities in dilute solutions. Both techniques can be used to estimate the chemical
composition distribution of copolymers and the tacticity distribution of homopolymers.
This information is crucial for understanding polymerization mechanisms and construct-
ing structure-property relationships. This review covers the theoretical aspects of both
techniques, describes their basic operation procedures and applications, and discusses the
mathematical models proposed for Crystaf and Tref.

Keywords Chemical composition distribution - Composition heterogeneity -
Crystallization analysis fractionation - Polyethylene - Polyolefins -
Temperature rising elution fractionation

Abbreviations

A-Tref Analytical temperature rising elution fractionation
CC Average comonomer content

CCD  Chemical composition distribution

CR Cooling rate

Crystaf Crystallization analysis fractionation

DSC  Differential scanning calorimetry

FTIR  Fourier transform IR

HDPE High-density polyethylene

LDPE Low-density polyethylene

LLDPE Linear low-density polyethylene

MWD  Molecular weight distribution

P-Tref Preparative temperature rising elution fractionation

SEC Size-exclusion chromatography
SNA  Successive nucleation/annealing
SSF Successive solution fractionation

Tref  Temperature rising elution fractionation
ATc  Temperature difference between Crystaf peak temperatures
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1
Introduction

Polymer microstructural characterization provides information that is essen-
tial to understand polymerization mechanisms and to construct structure-
property relationships required for the production of polymers with a set of
well-defined molecular and macroscopic properties.

Crystallization analysis fractionation (Crystaf) is a recently developed
characterization technique that fractionates polymer chains according to
their crystallizabilities in a dilute solution [1,2]. This technique is based on
the continuous nonisothermal crystallization of polymer chains from a dilute
solution. During crystallization, the concentration of polymer in solution is
measured as a function of crystallization temperature, generating a cumula-
tive concentration profile such as the one shown in Fig. 1. The derivative of
this cumulative concentration profile is proportional to the fraction of poly-
mer crystallized at each temperature interval and represents the distribution
of chain crystallizabilities in the sample.

For ethylene/1-olefin copolymers, chain crystallizability is mainly con-
trolled by the fraction of noncrystallizable comonomer units in the chain.
Consequently, the differential Crystaf profile shown in Fig. 1, together with
an appropriate calibration curve, can be used to estimate the copolymer
chemical composition distribution (CCD), also called the short-chain branch
distribution. The CCD of a copolymer describes the distribution of the
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Fig.1 Cumulative and differential crystallization analysis fractionation (Crystaf) profiles
of a blend of two polyolefins



4 S. Anantawaraskul et al.
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Fig.2 Chemical composition distribution (CCD) of a typical Ziegler-Natta linear low-
density polyethylene, reflecting the composition heterogeneity of these copolymers

comonomer fraction in its chains, reflecting its composition heterogeneity
(Fig. 2). Composition heterogeneity in copolymers can significantly influ-
ence their physical properties. For example, linear low-density polyethylene
(LLDPE) with a narrow CCD has much better film properties than LLDPE
with a broad CCD [3,4].

Several factors may contribute to CCD heterogeneity [5]. The more per-
vasive one is the statistical nature of polymerization which forces the com-
position of any synthetic copolymer chain to be always distributed around
a certain average value. For multi-site-type catalysts, e.g. heterogeneous
Ziegler-Natta catalysts, each active site type has a distinct set of polymer-
ization kinetics constants and produces polymer chains with different aver-
age microstructures. Therefore, the polymers synthesized with these cata-
lysts are mixtures of chains with different average chain lengths and average
comonomer compositions (Fig. 3). Nonuniform polymerization conditions,
i.e. temporal and spatial variations in monomer concentration and tempera-
ture during polymerization, may also be responsible for CCD heterogeneity.
Comonomer compositional drift, a commonly encountered phenomenon in
batch and semibatch polymerizations, can significantly broaden the CCD of
copolymers.

In the case of stereoregular polymers, such as isotactic and syndiotac-
tic polypropylene, chain tacticity is the main factor affecting crystallizability.
Crystaf can also be used to measure the distribution of tacticity. Since the
distribution of tacticity is often modeled with pseudo binary copolymeriza-
tion models (i.e. the meso and racemic insertions stand for the comonomer
type in the case of a copolymer), the following discussion for copolymers
can be easily modified to describe the tacticity distribution of stereoregular
polymers.
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Sites with low comonomer Sites with high comonomer
incorporation produce incorporation produce
longer chains shorter chains

Weight fractipn

— Mol % comonomer

Fig.3 Copolymers produced by Ziegler-Natta catalysts exhibiting a broad CCD. Chains
made by different active sites have different microstructural distributions

Crystaf was developed as an alternative to temperature rising elution frac-
tionation (Tref). Although both techniques are based on similar fractionation
mechanisms and provide comparable results, Tref operation tends to be more
time-consuming because it involves two fractionation steps, crystallization
and elution, while Crystaf requires only the crystallization step. Similarly
to Crystaf, the most important fractionation step in Tref occurs during the
crystallization step, but data collection in Tref is done only during the elu-

solvent
IR

+
polymer

Detector response

Atactic LLDPE Isotactic
PP PP

Elution temperature
solvent

Fig.4 Elution step of temperature rising elution fractionation (7Tref) analysis and typ-
ical Tref profiles of different polymers [5]. LLDPE linear low-density polyethylene, PP
polypropylene
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tion period (Fig. 4). In this review, an overview of Tref operation will also
be given and relevant recent research findings related to Tref will be high-
lighted. More comprehensive reviews focusing solely on Tref are available in
the literature [5-9]. This review focuses on the fractionation of ethylene/a-
olefin copolymers by Crystaf and Tref, because these techniques have been
used more often to analyze this class of polymers. Extensions to other types
of semicrystalline polymers, however, will also be discussed when required.

2
Theoretical Background

The fractionation mechanism of Crystaf and Tref relies on differences of
chain crystallizabilities in dilute solution: polymer chains with high crys-
tallizabilities will be fractionated at higher temperatures, while chains with
low crystallizability are fractionated at lower temperatures. In this section,
we review the basic theory of polymer crystallization in dilute solutions to
explain how solvent type, polymer volume fraction, molecular weight, and
comonomer content affect chain crystallizabilities and equilibrium melting
temperatures. The theory describing the CCD of copolymers will also be sum-
marized.

2.1
Thermodynamic Considerations for Homopolymer Solutions

The Flory-Huggins equation for the free energy of mixing can be used to de-
scribe the thermodynamic equilibrium of a concentrated polymer solution
assuming a uniform distribution of solvent and polymer segments [10, 11].
The decrease in the equilibrium melting temperature of the polymer due to
the presence of solvent and the number of chain segments is given by

1 1 _ R Vu In (VZ) 1 2
) N A

where TO is the melting temperature of the pure polymer, Tr, is the equi-
librium melting temperature of the polymer in solution, AH, is the heat of
fusion per repeating unit, V, and Vj are the molar volumes of the polymer
repeating unit and diluent, respectively, v, and v, are the volume fractions of
the diluent and polymer, respectively, x is the number of segments, and x; is
the Flory-Huggins thermodynamic interaction parameter.

The crystallization step in Crystaf and Tref, however, occurs in dilute so-
lution. Theoretically, this situation is more complicated because polymer
segments are nonuniformly distributed through the solution. Strictly speak-
ing, for dilute solutions the Flory-Huggins free-energy function shown in



Polymer Fractionation by Crystaf and Tref 7

Eq. 1 is no longer valid. To account for the nonuniform segment distribu-
tion, the general theory for dilute solutions, where the chemical potential of
the solvent is expressed in virial form, has to be considered. Fortunately, it
has been found that the change in chemical potential of the polymer with in-
creasing dilution is so small that it does not have any appreciable effect on its
equilibrium melting temperature [12]. For practical purposes, Eq. 1 is obeyed
over the complete concentration range of dilutions.

To examine the effect of chain length on the melting temperature of a poly-
mer in a dilute solution, it is appropriate to rearrange Eq. 1 as follows:

: - X &(VI_X]V%)' - [1—-—n(v2)+v—1] (2)

1
Tm T9 AH, Vi AH, | r

Here, the number of repeating units per polymer chain (r) is used instead
of the number of segments (x). The second term on the right-hand side
quantifies the effect of chain length, indicating that the equilibrium melting
temperature decreases with a reduction in molecular weight [13]. However,
this term is only important for chains with low molecular weights, as clearly

420

400

380

360

Tm K

340

320

300

280

00

Fig.5 Predicted melting temperatures for several chain lengths using Eq. 2 [13]
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illustrated in Fig. 5. For large values of r, the case of polymers with high
molecular weight, the melting temperature is relatively independent of chain
length and Eq. 2 is reduced to the simpler form
1 1 R V,

ﬁ-ﬁ—A—HHVI(Vl—XIV%)- (3)
Equation 3 implies that all polymer chains having reasonably large molecu-
lar weights will crystallize at the same temperature, all other factor being the
same. In other words, the effect of molecular weight on Crystaf or Tref pro-
files of high molecular weight polymers should be negligible. This is in good
agreement with experimental observations for both Crystaf and Tref [14, 24].

2.2
Thermodynamic Considerations for Copolymer Solutions

In the case of copolymer solutions, the melting temperature also depends on
interactions between the different monomeric units and the solvent. Consid-
ering the case in which the crystalline phase is pure (i.e., only monomeric
units of a single type crystallize and no solvent is present in the lattice),
the decrease in the melting temperature can be derived in a similar man-
ner as for the homopolymer solution case using the Flory-Huggins theory
with an appropriate modification [15]. To take into account the interactions
between both comonomers and solvent, the net interaction parameter for bi-
nary copolymers should be calculated as follows:

X1 =7VAX1A + VBX1B — VAVBXAB » (4)

where x; is the interaction parameter of a binary copolymer with pure
solvent, x1ao and x;p are the interaction parameters of the corresponding
homopolymers with the solvent, xap is the interaction parameter between
comonomers A and B in the copolymer chain, and v4 and vg are the volume
fractions of comonomers A and B in the copolymer molecules, respectively.

If the steric structures of both comonomer units in random copoly-
mers are similar, the melting temperature depression equation will be the
same as Eq. 1, with the interaction parameter calculated with Eq. 4. For
a given copolymer, the crystallizabilities of copolymer chains in dilute solu-
tion strongly depend on the chain composition. From thermodynamic con-
siderations, this can be explained from the fact that changes in copolymer
composition alter the value of the interaction parameter defined by Eq. 4. For
copolymers with two chemically similar comonomers, ;4 will be very close
to x18, and xap will approach zero. In this system, one can simply use Eq. 1
with x1 = x1a & x1B.



