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Preface

Quantum information has become an independent fast growing research field. There
are new departments and labs all around the world. devoted to particular or even
complex studies of mathematics, physics. and technology of controlling quantum
degrees of freedom. The promised advantage of quantum technologies has obvi-
ously electrified the field which had been considered a bit marginal until quite re-
cently. Before, many foundational quantum features had never been tested or used
on single quantum systems but on ensembles of them. Illustrations of reduction, de-
cay, or recurrence of quantum superposition on single states went to the pages of
regular text-books, without being experimentally tested ever. Nowadays, however, a
youngest generation of specialists has imbibed quantum theoretical and experimen-
tal foundations “from infancy”.

From 2001 on, in spring semesters I gave special courses for under- and post-
graduate physicists at E6tvos University. The twelve lectures could not include all
standard chapters of quantum information. My guiding principles were those of the
theoretical physicist and the believer in the unity of physics. I achieved a decent bal-
ance between the core text of quantum information and the chapters that link it to
the edifice of theoretical physics. Scholarly experience of the passed five semesters
will be utilized in this book.

I suggest this thin book for all physicists, mathematicians and other people in-
terested in universal and integrating aspects of physics. The text does not require
special mathematics but the elements of complex vector space and of probability
theories. People with prior studies in basic quantum mechanics make the perfect
readers. For those who are prepared to spend many times more hours with quantum
information studies. there have been exhaustive monographs written by Preskill. by
Nielsen and Chuang, or the edited one by Bouwmeester. Ekert, and Zeilinger. And
for each of my readers. it is almost compulsory to find and read a second thin book
“Short Course in Quantum Information, approach from experiments™. . .

Acknowledgements 1 benefited from the conversations and/or correspondence with
Jirgen Audretsch. Andras Bodor, Todd Brun. Tova Feldmann, Tamas Geszti. Thomas
Konrad. and Tamas Kiss. [ am grateful to them all for the generous help and useful
remarks that served to improve my manuscript.
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cNOT

Poisson bracket
commutator
expectation value
matrix

adjoint matrix
modulo sum

phase space points
phase space

phase space distribution,
classical state

binary numbers

binary string

discrete classical state
operation

polarization reflection
identity operation
Lindblad generator
classical physical quantities
Hamilton function
indicator function
classical effect

Hilbert space

vector space dimension
state vectors

adjoint state vectors
complex inner product
matrix element

density matrix, quantum state

quantum physical quantity
Hamiltonian

hermitian projector

unit matrix

unitary map

quantum effect
probability

quantum
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LO
LOCC

composition
Cartesian product
tensor product
trace

partial trace

weight in mixture
spin-up, spin-down basis
Bloch unit vectors

qubit state vector

qubit polarization vector
Pauli matrices

vector of Pauli matrices
real spatial vectors

real scalar product

qubit hermitian matrix
one qubit Pauli gates
Hadamard gate

phase gate

fidelity

entanglement measure
Shannon entropy

von Neumann entropy

o'|| p) relative entropy

Bell basis vectors
computational basis vector
Kraus matrices
environmental basis vector
classical message
Shannon entropy
conditional Shannon entropy
mutual information
channel capacity
conditional state
transfer function

local operation
local operation and
classical communication
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1 Introduction

Classical physics — the contrary to quantum — means all those fundamental dy-
namical phenomena and their theories which became known until the end of the
19th century, from our studying the macroscopic world. Galileo’s, Newton's, and
Maxwell’s consecutive achievements, built one on the top of the other, obtained
their most compact formulation in terms of the classical canonical dynamics. At the
same time, the conjecture of the atomic structure of the microworld was also con-
ceived. By extending the classical dynamics to atomic degrees of freedom, certain
microscopic phenomena also appearing at the macroscopic level could be explained
correctly. This yielded indirect, yet sufficient, proof of the atomic structure. But
other phenomena of the microworld (e.g., the spectral lines of atoms) resisted to the
natural extension of the classical theory to the microscopic degrees of freedom. Af-
ter Planck, Einstein, Bohr, and Sommerfeld, there had formed a simple constrained
version of the classical theory. The naively quantized classical dynamics was al-
ready able to describe the non-continuous (discrete) spectrum of stationary states of
the microscopic degrees of freedom. But the detailed dynamics of the transitions
between the stationary states was not contained in this theory. Nonetheless, the
successes (e.g., the description of spectral lines) shaped already the dichotomous
physics world concept: the microscopic degrees of freedom obey to other laws than
macroscopic ones do. After the achievements of Schrodinger, Heisenberg, Born,
and Jordan, the quantum theory emerged to give the complete description of the mi-
croscopic degrees of freedom in perfect agreement with experience. This quantum
theory was not a mere quantized version of the classical theory anymore. Rather it
was a totally new formalism of completely different structure than the classical the-
ory, which was applied professedly to the microscopic degrees of freedom. As for
the macroscopic degrees of freedom, one continued to insist on the classical theory.

For a sugar cube, the center of mass motion is a macroscopic degree of freedom.
For an atom, it is microscopic. We must apply the classical theory to the sugar
cube, and the quantum theory to the atom. Yet, there is no sharp boundary of where
we must switch from one theory to the other. It is, furthermore, obvious that the
center of mass motion of the sugar cube should be derivable from the center of mass
motions of its atomic constituents. Hence a specific inter-dependence exists between
the classical and the quantum theories, which must give consistent resolution for
the above dichotomy. The von Neumann ‘‘axiomatic” formulation of the quantum
theory represents, in the framework of the dichotomous physics world concept, a

Lajos Diosi: A Short Course in Quantum Information Theory, Lect. Notes Phys. 713. 1-3 (2007)
DOI 10.1007/3-540-38996-2_1 (© Springer-Verlag Berlin Heidelberg 2007



2 1 Introduction

description of the microworld maintaining the perfect harmony with the classical
theory of the macroworld.

Let us digress about a natural alternative to the dichotomous concept. According
to it, all macroscopic phenomena can be reduced to a multitude of microscopic ones.
Thus in this way the basic physical theory of the universe would be the quantum
theory, and the classical dynamics of macroscopic phenomena should be deducible
from it, as limiting case. But the current quantum theory is not capable of holding
its own. It refers to genuine macroscopic systems as well, thus requiring classical
physics as well. Despite of the theoretical efforts in the second half of 20th century,
there has not so far been consensus regarding the (universal) quantum theory which
would in itself be valid for the whole physical world.

This is why we keep the present course of lectures within the framework of the
dichotomous world concept. The “axiomatic” quantum theory of von Neumann will
be used. Among the bizarre structures and features of this theory, discreteness (quan-
tumness) was the earliest, and the theory also drew its name from it. Yet another odd
prediction of quantum theory is the inherent randomness of the microworld. During
the decades, further surprising features have come to light. It has become “fashion”
to deduce paradoxical properties of quantum theory. There is a particular range of
paradoxical predictions (Einstein-Podolski-Rosen, Bell) which exploits such corre-
lations between separate quantum systems which could never exist classically. An-
other cardinal paradox is the non-clonability of quantum states, meaning the fidelity
of possible copies will be limited fundamentally and strongly.

The initial role of the paradoxes was better knowledge of quantum theory. We
learned the differenciae specificae of the quantum systems with respect to the clas-
sical ones. The consequences of the primarily paradoxical quantumness are under-
stood relatively well and also their advantage is appreciated with respect to clas-
sical physics (see, e.g., semiconductors, superconductivity, superfluidity). By the
end of the 20th century the paradoxes related to quantum-correlations have come
to the front. We started to discover their advantage only in the past decade. The
keyword is: information! Quantum correlations, consequent upon quantum theory,
would largely extend the options of classical information manipulation including
information storage, coding, transmitting, hiding, protecting, evaluating, as well as
algorithms, game strategies. All these represent the field of quantum information
theory in a wider sense. Our short course covers the basic components only, at the
introductory level.

Chapters 2—4 summarize the classical, the semiclassical, and the quantum
physics. The two Chaps. 2 and 4 look almost like mirror images of each other. I
intended to exploit the maximum of existing parallelism between the classical and
quantum theories, and to isolate only the essential differences in the present con-
text. Chapter 5 introduces the text-book theory of abstract two-state quantum sys-
tems. Chapter 6 discusses their quantum informatic manipulations and presents two
applications: copy-protection of banknotes and of cryptographic keys. Chapter 7 is
devoted to composite quantum systems and quantum correlations (also called entan-
glement). An insight into three theoretical antecedents is discussed, finally I show
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two quantum informatic applications: superdense coding and teleportation. Chap-
ter 8 introduces us to the modern theory of quantum operations. The first parts of
Chaps. 9 and 10 are anew mirror images of each other. The foundations of classical
and quantum information theories, based respectively on the Shannon and von Neu-
mann entropies, can be displayed in parallel terms. This holds for the classical and
quantum theories of data compression as well. There is, however, a separate section
in Chap. 10 to deal with the entanglement as a resource, and with its conversions
which all make sense only in quantum context. Chapter 11 offers simple introduc-
tion into the quintessence of quantum information which is quantum algorithms. I
present the concepts that lead to the idea of the quantum computer. Two quantum
algorithms will close the Chapter: solution of the oracle and of the searching prob-
lems. A short section of divers Problems and Exercises follow each Chapter. This
can, to some extent, compensate the reader for the laconic style of the main text.
A few number of missing or short-spoken proofs and arguments find themselves as
Problems and Exercises. That gives a hint how the knowledge, comprised into the
economic main text, could be derived and applied.

For further reading, we suggest the monograph [1] by Nielsen and Chuang which
is the basic reference work for the time being, together with [2] by Preskill and [3]
edited by Bouwmeester, Ekert and Zeilinger. Certain statements or methods, e.g. in
Chaps. 10 and 11, follow [1] or [2] and can be checked from there directly. Our
bibliography continues with textbooks [4]-[10] on the traditional fields, like e.g.
the classical and quantum physics, which are necessary for the quantum informa-
tion studies. References to two useful reviews on g-cryptography [11] and on g-
computation are also included [12]. The rest of the bibliography consists of a very
modest selection of the related original publications.






2 Foundations of classical physics

We choose the classical canonical theory of Liouville because of the best match
with the g-theory — a genuine statistical theory. Also this is why we devote the par-
ticular Sect. 2.4 to the measurement of the physical quantities. Hence the elements
of the present Chapter will most faithfully reappear in Chap. 4 on Foundations of
g-physics. Let us observe the similarities and the differences!

2.1 State space

The state space of a system with n degrees of freedom is the phase space:
I ={(qx.px):k=1.2..... ny={rpk=12,..., n} = {z}, (2.1)

where ¢;.. py. are the canonically conjugate coordinates of each degree of freedom in
turn. The pure state of an individual system is described by the phase point 7. The
generic state state is mixed, described by normalized distribution function:

p=plx) >0, /p(h' =1. (2.2)

The generic state is interpreted on the statistical ensemble of identical systems. The
distribution function of a pure state reads:

/)pure(-r) = 0z —Z) . (2.3)

2.2 Mixing, selection, operation

Random mixing the elements of two ensembles of states p; and p, at respective
rates w; > 0 and wo > 0 yields the new ensemble of state:

p=wip +waps; wy;+wy=1. (2.4)

A generic mixed state can always be prepared (i.e. decomposed) as the mixture of
two or more other mixed states in infinite many different ways. After mixing, how-
ever, it is totally impossible to distinguish which way the mixed state was prepared.

Lajos Diési: A Short Course in Quantum Information Theory. Lect. Notes Phys. 713, 5-13 (2007)
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