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1 INTRODUCTION

Membrane processes may be considered to approach
ideal separation processes, in that they offer the
possibility of selectively permeating one component
from a mixture whilst rejecting others, in a continuous
steady state. Consequently, membrane processes have
gained in importance as economically viable and
environmentally friendly methods to solve an
increasingly wide range of problems over the last thirty
years.

Whilst the principles utilised in membrane processes
have often been known for over 150 years, it has not
been until the latter part of this century that the
technology to exploit these principles efficiently has
evolved. As indicated in this review there has been a
continuous growth in the number of scientific papers
and patents covering all aspects of membrane
technology, which shows little sign of diminishing
(185, 216, 274, 327). Clearly there is still significant
potential for further gains to be made in understanding,
as well as improvements in, or development of, new
technologies, which will ensure that membrane
technology makes a much deeper impact on many
aspects of our lives in the future.

Table 1 gives an indication of the very broad range of
membrane technologies now available.

In general, membranes are thin layers, that can have
significantly different structures, but all have the
common feature of selective transport to different
components in a feed. Membranes may be
homogeneous or heterogeneous, symmetrical or
asymmetrical, and porous or non-porous. They can be
organic or inorganic, liquid or solid. A range of driving
forces may be used, e.g. concentration, activity,
pressure, electrical properties or temperature. Hence a
wide range of processes are encompassed within
membrane technology.

For some processes both membrane development and
process design are so advanced that groundbreaking
innovations cannot be expected for a long time,
although existing systems are always open to
improvement. Microfiltration, ultrafiltration, reverse
osmosis, dialysis and electrodialysis are such processes.
There is more potential for improvement, especially
in membrane and module design, for nanofiltration,
pervaporation, gas separation, controlled release and
liquid membrane technology which are already used
in some applications. Additionally there is still great
potential for completely new developments. Processes

Table 1. Membrane Processes

Process Application

Microfiltration Separation of suspended

particles

Ultrafiltration Concentration and purification
of solvents from macro-

molecular solutions

Nanofiltration Concentration and purification
of solvents from medium
molecular weight solutes

Membrane Desalination and concentration

Distillation of solutions

Dialysis Demoval of low MW solutes
from macromolecular
solutions and suspensions

Electrodialysis Desalination and

de-acidification

Reverse Osmosis | Desalination, concentration of
low MW solutes

Gas Permeation | Gas separation

Pervaporation Separation of azeotropes and
liquid mixtures

Liquid Separation of ions and solutes

Membranes from liquids

based ‘on electrochemical systems, sensors, catalytic
membranes and membrane reactors require major
developments, although some applications have already
been recognised (139, 179, 253).

The overall performance of any particular polymer in
a given separation is a function of both the chemical
structure of the polymer and the physical form of the
membrane. Within this overall structure, the exact way
in which the polymer chains arrange themselves will
affect the permeation characteristics, i.e. the amount
of free volume between the chains and their relative
ease of movement as well as the nature of the functional
groups along the polymer backbone. Any study of the
separation characteristics of polymer membranes needs
to take into account these ditferent levels of structure.

Consequently, this review begins with an indication of
how separation performance is affected by the
membrane structure. Then the processes of reverse
osmosis (including nanofiltration), ultratiltration, gas
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separation, pervaporation and electrodialysis are
discussed, with the aim of providing a brief historical
background to each membrane process, a description
of the range of polymer membranes presently used,
and an indication of some of the influences of polymer
structure on performance. Finally recent research and
some potential areas for future developments are
discussed.

2 THE RELATIONSHIP BETWEEN
MEMBRANE STRUCTURE AND
SEPARATION PROPERTIES

Early work on the development of polymer membranes
for desalination quickly showed that the performance
requirements would not be met by the use of simple
dense films of any polymer (a.1), and the apparent
conflict seen in the need for a thin polymer film that
was also self-supporting seemed insuperable. However,
the development of the integral skinned asymmetric
membrane by Loeb and Sourirajan in 1960 led to the
breakthrough by the development of a thin (0.2pm)
skin of polymer integrally supported on a porous sub-
structure. The thin skin is the functional portion of the
membrane, with its high density giving a selectivity
which approaches that of a thick, dense film. The
porous sub-structure functions as a mechanical support
for the skin. Derived from this concept of a thin skin
supported on a porous sub-structure, a broad range of
membrane separation regimes have been developed and
are described in this review. They differ from each other
with respect to pore diameter of the thin skin and the
range of particles that they retain.

Several authors have defined four levels of structure
within these membranes through which it is possible
to understand the properties of any synthetic membrane,
irrespective of the type of polymer used to make the
membrane or its application (92, 372, 380, 381, 407).
These levels are as follows:

Level 1 Segmental composition of the polymer,

Level 2 Steric relationships in the segmental
structure,

Level 3 Morphology of asymmetric membranes,

Level 4 Morphology of thin-film composite
membrane.

It is evident that Level 1 affects all of the other levels
of structure of the membrane. Levels 1 and 2 are

primary properties of the polymer, whilst Levels 3 and
4 are properties of the membrane. Consequently, it
follows that the ultimate performance of any membrane

is a function of both the polymer type AND its mode

of formation.

Whilst the bulk of this review deals with the
relationship between polymer structure and membrane
performance, the following section highlights the
effects that membrane formation can have on
performance. It is felt that these aspects are not always
appreciated and need to be taken into acount whenever
attempts are made to compare the performances of
polymers from different manufacturers or scientific
papers. In fact, recognition of this importance has led
to the development of higher performance membranes
then previously thought possible (129, 364, 375, 377,
380, 381).

2.1 Asymmetric Membranes

The details of the theory and practice of the formation
of integrally skinned asymmetric membranes by the
phase inversion process are discussed elsewhere (For
example 92, 102, 129, 280, 283, 364, 381). However,
a brief description is useful in order to indicate the many
factors involved in the process.

Initially, the membrane may be cast either as a flat film
or as a hollow fibre from a solution consisting of
polymer, solvent(s) and non-solvent(s). The nascent
film is then immersed in a quench medium that is a
non-solvent for the polymer. The resulting exchange
of solvent from the polymer solution to the quench
solution results in a phase separation of the polymer
solution into two phases with different compositions.
Some non-solvent is incorporated in the initial casting
dope in order to speed the precipitation of the polymer
film upon the immersion in the quenching medium.
The resulting membrane structure is thus determined
by the compositions of the phases at the point of
solidification of the polymer-rich phase. The actual
phase compositions are a complex function of the
polymer/solvent/non-solvent system used. Ternary
phase diagrams have been used extensively to gain a
detailed understanding of these parameters (102, 280,
281). The outer skin layer formation is determined by
the higher concentration of polymer in this region
which may be achieved by either a ‘wet’ (solution
diffusion governed) or “dry’ (solvent evaporation
governed) process in which solvent is removed from
this area.
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Figure 1

Structure of polysulphone membrane made by wet phase inversion characterised by delayed onset of phase
separation. Casting system: 15 wt% polysulphone in tetrahydrofuran
Quench medium: methanol

Reprinted by permission of John Wiley & Sons Ltd., from Recent Advances in the Formation of Ultrathin Polymeric Membranes for Gas
Separations, I. Pinnau, Polymers for Advanced Technologies, Vol.5, p.733-744, 1994. Copyright © 1994 John Wiley & Sons Lid.

Figure 1 shows a typical ‘wet’ phase inversion
membrane structure with a slow demixing step.
Generally, these structures are defect-free but gas fluxes
are very low due to the formation of thick skin layers
(>1um) and closed cell structures that offer significant
resistance to permeate transport in the substrate layer.

A thin skin layer can be formed by the use of a casting
solution/quench solution combination that results in an
effectively instantaneous phase separation (due to a
strong interaction between the casting solution and the
quench solvent). The thickness of the skin layer is
typically <0.2pum, but usually contains a relatively high
proportion of microporous defects (>10~* %). Coating
these membranes with a defect-blocking layer of
polydimethylsiloxane is necessary to achieve
reasonable gas separation performances. Table 2
indicates the range of performance varability arising
from the use of different casting solvents.

It has recently been recognised that there is a
relationship between the free volume of the polymer

in the skin layer and the size of the solvent molecules
in the casting solution (380, 381, 382). This led to the
use of Lewis acid/Lewis base solvent systems, enabling
the use of large solvent molecules which were readily
removed on immersion in the quench solution (due to
the break-up of the Lewis acid/Lewis base complex
solvent into its component parts).

An additional advantage gained was that this solvent
system resulted in the development of an extremely
thin skin layer with a transition layer between it and
the porous sub-structure, with the overall result of this
being an increase in the flux but no loss of selectivity.
Comparison between Tables 2 and 3 indicates the
performance improvement achievable by the use of
large molar volume solvents.

The solvent system used in Table 3 was N-
methylpyrrolidone with propionic acid at a 1:1 molar
ratio (the membranes were subsequently coated with a
polydimethylsiloxane defect blocking layer).

WU
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Table 2. Etfect of Different Casting Solvents on the Gas Separation Properties of Asymmetric
Pi"ﬂysulf)hon“}'[ollow Flbre Membranes (381)

Pressure normalised flux Selectivity

Solvent 10¢ cm’/cm®.sec.cmHg electvity
0, N, O./N,

Triethylphosphate 26.1 79 3.3
Formylpiperidine 10.2 49 2.1
Dimethylacetamide 94 2.7 35
N-Methylpyrrolidone 44 1.5 3.0
Dimethylformamide 43 1.5 29

Table 3. Effect of1

Pressure normahsed flux Selectivity

Polymer 10 cm*/cm?.sec.cmHg s
0, N, O./N,

Polyetherimide* 0.5 0.063 79
Acrylonitrile-styrene 10.4 1.73 6.0
copolymer (47% PAN)
Polysulphone* 43.0 8.3 32
Polyethersulphone** 13.1 2.6 5.1

* at 30°C; ** at 50°C

Integrally skinned asymmetric membranes are also
produced by a dry/wet phase inversion process. In this
case, instantaneous phase separation of the skin layer
is achieved by solvent evaporation, whilst the bulk of
the porous substructure is formed by solvent/non-
solvent exchange during a quench step. This technique
results in the formation of defect-free ultra-thin skin
layers (as thin as 2nm), and is applicable to a wide
range of glassy hydrophobic polymers suitable for gas
separation (283). Figure 2 shows a typical cross-section
of such a membrane, whilst Table 4 indicates the range
possible (102, 337).

Production of a defect-free skin layer has been
developed very recently by van’t Hof et al (a.3).

2.2 Thin Film Composite Membranes

The thin film composite (TFC) membrane was
developed as an alternative means of producing a thin
separating layer on top of a more porous support layer.

The advantage of the TFC is that the roles of the active,
separating layer and the support can be separated, and
each part made from the optimum polymer, rather than
relying upon a single polymer to provide both good
separating characteristics and mechanical strength.

They are prepared in two ways, and the first, which is
utilised in the production of reverse osmosis
membranes, involves the interfacial polymerisation of
two components at the surface of a microporous
membrane. The thickness of the active layer can vary
from 20 to over 500nm depending upon the
composition of the active layer (a.4).

The second method entails the application of a dilute
polymer solution onto the surface of a microporous
support. Whilst this process is essentially very simple,
it has proved to be very difficult to form defect-free
membranes with active layers much thinner than 1um
(102). This technique has been used for the formation
of membranes from rubbery polymers for the removal
of vapours from air.

)
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3. Bum

Figure 2

Cross-section of a defect-free integrally skinned
asymmetric polysulphone membrane made by
dry/wet phase inversion

Reprinted by permission of John Wiley & Sons Lid., from Recent
Advances in the Formation of Ultrathin Polymeric

Membranes for Gas Separations, I. Pinnau, Polymers for
Advanced Technologies, Vol.5, p.733-744, 1994.

Copyright © 1994 John Wiley & Sons Lid.

Table 4. Gas Separation Properties of Integrally Skinned Asymmetric Membranes made by
Dry/Wet Phase Separation (T=25°C) (a.2)

Pressure normalised flux .. Skin layer
P Selectivity R
Polymer 10 ecm’/cm?.sec.cmHg thickness
Oz H: O:/Nz H:/N1 (;\)
Polysulphone
% c ° 28 1 314 6.0 67 400
Q Q S
::: | ::: :3 Il
CHy (0] n
Polycarbonate
b 9 52 424 5.1 42 300
OO
CHy n
Polyimide
i i
; | - 0 i | il ol &
N N c Z o) 54 43 830
k° ¢/ (IZH;
1 CFy CRy 3 5

* Apparent skin layer thickness based on oxygen permeability coefticient
P(O,) Polysulphone = 1.1 x 10" (cm® cm/cm® sec.cmHg) (partial pressure)

P(O,) Polycarbonate = 1.5 X 10" (¢cm' cm/cm*.sec.cmHyg)
P(O,) Polyimide = 6.8 x 10" (cm? cm/cm*.sec.cmHg)

~
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Table 5. Gas Separation Properties of Thin Film Composite Membranes (adapted from ref. 102)

Pressure normalised flux .
10 em‘/em*.sec.cmHg Selectivie
Polymer £ .
0. O./N,
Polytrimethylsilylpropyne 1360 1.4
Polyketoxime organosiloxane 1500 22
Polydimethylsiloxane 330 2:1
Polyaminosiloxane 103 24
Ethylcellulose 26 3.8
Poly-4-methyl-1-pentene 24 43
Some recent studies have shown thatitis very difficult Table 6.
1o obtain defect-free membranes by this technique due Selectivity and Membrane Type
to the non-uniformity of the microporous substrate (255)
(102, 277) and references therein). Cons.equent].y, it has Material - Selectivity
proved necessary to plug the defects with a thin layer Type O./N,
of a material such as polydimethylsiloxane. . —
- Polysulphone Isotropic 6.4
. ) ) . Asymmeltric 6.9
Whilst the selective layer is many times less permeable
than the microporous support layer, it has been found Polycarbonate Isotropic i
that when the selective layer is exceptionally thin the Ayt 4
resistance to gas transport by the support layer is no Polyester Carbonate | Isotropic 4.8
longer insignificant. This has the net result that the Asymmetric 5.1

selectivity of the composite membrane can be lower
than that of the selective layer alone, even if it is defect-
free (a.5). Table 5 shows the gas separation properties
of a range of thin film composite membranes.

2.3 Comparison of Permeation Properties
between Asymmetric, Composite and
Isotropic Membranes

The fundamental gas transport properties of polymers
are often studied on isotropic films having thicknesses
that are orders of magnitude larger than those of the
skin layer of the final membrane and whose preparation
route is radically different.

It is often forgotten that glassy polymers are non-
equilibrium materials, and that their permeation
properties will therefore depend upon their history and
the preparation protocol. This lack of appreciation of
the importance of the preparation protocol is evidenced
by the small number of studies that have been made on
this topic until very recently (232, 255, 260, 302).

Table 6 shows that asymmetric membranes made from
a variety of polymers show increased selectivities when
compared with isotropic films made from the same
polymers.

The activation energies for permeation of nitrogen and
oxygen were found to be higher in the asymmetric
membranes than in the isotropic membranes,
suggesting that the free volume of the polymer in the
asymmetric skin layer is lower. Most significantly, it
was demonstrated that the permeation behaviour of CO,
was completely different between the two types of
membrane. In the isotropic case permeability declined
with increasing pressure, whilst for the asymmetric
membrane permeability increased with pressure. This
clearly indicates that the skin layer morphology of an
asymmetric membrane exhibits a smaller/different
distribution of free volume than that of isotropic films
due to the different preparation route. Similarly, very
few studies have been made of the ageing effects of
glassy polymer membranes until recently (232). This
showed that a very significant time dependence exists
for the gas permeation propertics as shown in Table 7.
The results indicate that the dependence may be due to
a decrease in the fractional free volume and increased
cohesive energy density of the polymers caused by
more efficient chain packing.
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as a Function of Time (232)

Table 7. Gas Transport Properties and Selectivities in a 6FDA-IPDA Composite Membrane

‘ . Gas Flux Selectivit
Ageing time 10 cm*(STP)/cm?.s.cmHg clectivity
(Days)
N, 0, He O/N He/O, He/N,
0 4.1 19.8 115.5 4.9 5.8 28.4
20 0.8 5.2 57.4 6.5 11.1 71.5
Dense Film 5.1 8.8 47.0

Dense film age at test = 5 months

2.4 Conclusions

The permeation properties of polymer membranes are
strongly influenced by both the preparative route used
and the final configuration (i.e. isotropic, asymmetric
or composite) of the membrane.

The nature of the solvent(s) used can have a major
influence on the effective free volume of the active
layer as well as the permeability of the support layer
due to the thermodynamics and kinetics of the phase
separation process.

The non-equilibrium nature of glassy polymers can
have a significant effect upon the stability of the
performance of a membrane.

In thin film composite membranes, the nature of the
substrate can have a marked effect on the final
permeation properties.

Insufficient attention has been paid to these factors in
much previous work, and if combined with the variable
test conditions that are frequently used it is clear that
simplistic comparisons of performance between
different polymers are likely to be very qualitative at
best.

Thus it is apparent that scope still exists for more careful
studies to take place of structure/property relationships,
taking all the above factors into account.

3 REVERSE OSMOSIS
3.1 Historical Perspective

3.1.1 Asymmetric Membranes

The development of reverse osmosis membranes
originated from the investigations of Reid and Breton

(a.1) in 1959 on a wide range of dense films. Of these,
cellulose acetate (CA) with a degree of acetate
substitution of approximately 2.6 gave the best result.
This was probably because the material had the correct
balance of hydrophilicity with intramolecular hydrogen
bonding to give a high water sorption whilst
maintaining sufficient structure to give good mobility
selectivity.

However, the flux was very low due to the relative
thickness of even the thinnest dense films that could
be produced. This led to the development by Loeb and
Sourirajan of an asymmetric, skinned CA membrane
with a flux up to 500 times greater (a.6). A further
significant improvement was made by Saltonstall in
1969 with the development of a cellulose triacetate
blend membrane with CA (CTA/CA) (a.7) Later,
membranes were produced from CTA alone that had
superior properties to either the CA or the CTA/CA
blend membranes.

Figure 3 shows a typical flat sheet asymmetric
membrane structure.

A later development was the production of hollow fibre
membranes from CTA by Dow Chemical (a.8). A
problem with the CA type membranes is their tendency
to hydrolyse slowly with time, with the rate of
hydrolysis being dependent upon the feed constituents
and the pH (a.9). In addition, they are prone to
compaction under the high applied operating pressures
used. Many variants on cellulose acetate have been
proposed and studied (for example, 183, 344, 371), but
in most cases overall performance has not warranted
their replacing CA membranes completely (a.10). Use
of cellulose acetate butyrate has been evaluated for the
separation of organic mixtures (319).
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Figure 3

Scanning electron micrograph of the substructure of asymmetric membranes showing dense skin and porous
substructure. Flat cellulose acetate membrane (total thickness ~ 100pm)

Reprinted by permission of Academic Press, Inc. and the author, from Desalting Experience by Hyperfiliration (Reverse Osmosis) in the
United States, G. Belfort, p.226, in Synthetic Membrane Processes, Fundamentals and Water Applications, ed. G. Belfort, 1984.

Whilst the work of Reid and Breton attempted to relate
polymer structure to performance, the revolutionary
result of Loeb and Sourirajan in discovering how to
produce a high flux, high selectivity membrane led to
a concentration on improved methods of asymmetric
membrane production, rather than further attempts to
identify other polymer structures that would give a
combination of high flux with high selectivity. This
approach, of modifying the casting dope formulation
tended to dominate published reverse osmosis research
throughout the sixties and seventies, rather than a
detailed partitioning of solubility and mobility factors
that has been used in the gas separation area.

Membrane research on hollow fibre polyamide
membranes in the early 1960s by DuPont (originally
for gas separations) led to the introduction of an
aromatic polyamide hollow fibre membrane for
desalination of brackish water in 1969 (a.11). The
materials used resulted from a careful balancing of the

polymer composition and the steric relationships in the
segmental structure, (structure levels 1 and 2 - see
Section 2) by the use of mixed isomeric diamine
monomers of phenylediamines with isophthalic and
terephthalic diacid chlorides. See Figure 4. This
approach allowed the use of relatively inexpensive
monomers with excellent chain stiffening abilities
whilst avoiding crystallisation in the dope or in the skin
as would happen with the pure terephthalic or
1sophthalic aramids.

3.1.2 Thin Film Composite Membranes

The thin film composite (TFC) membrane was
developed as an alternative means of producing a thin
separating layer on top of a more porous support layer.
The advantage of the TFC was that the roles of the
active, separating layer and the support could be
separated and each part made from the optimum

10
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Illustration of tailoring of ‘structure level’ by copolymerisation
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Figure 5

Typical TFC membrane structure made by an in-situ interfacial polycondensation method

polymer, rather than rely on a single polymer to
combine both roles of having good separating
characteristics as well as having the required
mechanical strength for the support layer.

A typical TFC membrane consists of an ultra thin salt
barrier layer that covers the surface of a porous
polysulphone substrate. The salt barrier is formed by
an in-situ interfacial polymerisation reaction or an in-
situ crosslinking at the surface of a water soluble
polymer layer. See Figure 5 (a.12, a.13).

The first examples, made in 1964, consisted of cellulose
acetate cast onto a porous support, but these never

reached commercialisation. However, work by Cadotte
in 1972 led to the first true TFC membrane to be
commercialised. A detailed description of the history
of the development of the TFC membrane has been
given elsewhere (a.14).

TFC membranes have reached a major position among
reverse osmosis membranes today due to their
outstanding performance and durability (347).

3.2 Range of Applications

The main applications for reverse osmosis include
production of high purity water, desalination of sea
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