oL odp ORIENTATION =
; e ._,f.._’,ﬂ
N et O] qu'mamr
‘ "1 secoun EDITION

X . J"

et 23y

£ . Concepts =

WP * Analysis and Design
$hn » Languages
e Databases ¢
=i+ * Graphical User Interfacds %
gr, o Standards o

SETRAG KHOSHAFIAN
RAZMIK ABNOUS

Object Orientation
Second Edition

CONCEPTS ¢ ANALYSIS & DESIGN - LANGUAGES » DATABASES °
GRAPHICAL USER INTERFACES » STANDARDS

Setrag Khoshafian
Razmik Abnous

John Wiley & Sons, Inc.

New York e Chichester « Brisbane « Toronto « Singapore

Publisher: Katherine Schowalter

Senior Editor: Diane D. Cerra

Managing Editor: Micheline Frederick

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc. is aware of a claim, the prod-
uct names appear in initial capital or all capital letters. Readers, however, should con-
tact the appropriate companies for more complete information regarding trademarks
and registration.

This text is printed on acid-free paper.
Copyright © 1995 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional service. If legal advice or
other expert assistance is required, the services of a competent professional person
should be sought.

Reproduction or translation of any part of this work beyond that permitted by section
107 or 108 of the 1976 United States Copyright Act without the permission of the copy-
right owner is unlawful. Requests for permission or further information should be
addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data
Khoshafian, Setrag.

Object orientation : concepts, analysis & design, languages, databases, graphical user
interfaces, standards / Setrag Khoshafian, Razmik Abnous.

p. cm.

Includes bibliographical references.

ISBN 0-471-07834-4 (pbk.)

1. Object-oriented programming (Computer science) I. Abnous, Razmik.
II. Title.
QA76.64.K47 1995
005.1'1—dc20 95-22368

CIP

Printed in the United States of America
10987654321

Object Orientation
Second Edition

1o our wives
Silva Khoshafian and
Suzanne M. Abnous

and children
Nishan, Jonathan, Shahan, and Nareg Khoshafian,
Sevan, Haig, and Armen Abnous

Preface

Application environments are becoming increasingly fast-paced and complex. There is
great diversity in the way information is accessed, manipulated, and presented. Infor-
mation is no longer centralized; it is distributed on networks of heterogeneous envi-
ronments. Different generic products and tools attempt to simplify a user’s interactions
with information systems. Unfortunately, the diversity and the lack of integration
among these products often force users to learn multiple-user interface paradigms,
obtuse operating system scripts, and different key-stroke commands.

There is an enormous need for integration, simplicity, and ease of use across all
products. But simplicity and ease of use come at a price. The simpler and more intuitive
the environment, the more complex the underlying software system must be to support
and implement it. To meet the computational needs of emerging applications, software
must be modular, extensible, maintainable, and robust. It must be manageable. This
means the model of the real world and its implementation in the system should not be
too far off.

Object orientation is an enabling software technology that attempts to fulfill
these increasingly demanding computational needs. The potential of object technology
stems from:

1. The proficiency of its higher-level object-oriented model, which also reduces
software cost and provides the designer with real-world programmable com-
ponents.

2. Its capability to share and reuse code with object-oriented engineering tech-
niques, reducing the time required to develop an application.

vii

viii

B Preface

3. Its capability to localize nd minimize the effects of modifications through
object-oriented programming abstractions, allowing the software to encom-
pass more diverse algorithms and technologies.

This book clarifies the basic concepts associated with object orientation. It pro-
vides a clear yet comprehensive exposure to the fundamental ideas in object orienta-
tion. This is important since object orientation is often confused with certain languages,
such as Smalltalk, or particular user-interface paradigms, such as windows and icons.
Furthermore, a clear understanding of object-oriented concepts will allow the reader to
use object-oriented constructs in any programming language (including conventional
ones).

The book will give the reader a basic understanding of the main concepts of
popular object-oriented systems: languages, databases, and user interfaces. It also
elucidates object-oriented analysis and design methodologies and shows how the
object-oriented concepts manifest themselves in object-oriented software develop-
ment. Object orientation is above all a programming style that allows better organiza-
tion and modularization of large application programs. The book emphasizes the
concepts and the ideas for improving programming style, regardless of whether the
programmer uses an object-oriented programming language. Special emphasis is given
to C++ and to the newly emerging fields of object-oriented analysis and design, object-
oriented databases, and user interfaces.

Many programming languages are labeled or claim to be “object-oriented.” We felt
it was important to show how object-oriented concepts are reflected in these languages.
Simula and Smalltalk have played a historic role in the evolution of object-oriented sys-
tems and concepts. Nevertheless, we believe the most popular system development lan-
guages of the 1990s will be C++. Hence we devote an entire chapter to it.

The book also demonstrates the object-oriented concepts that manifest them-
selves in database applications. We felt the need to present a clear exposure of the
emerging field of object-oriented databases. These databases constitute the next evolu-
tionary step after relational databases; post-relational database management systems
will all have object-oriented features. This book demonstrates both the object-oriented
characteristics and database characteristics of several systems that claim to be object-
oriented databases.

As the emergence of Windows 95 and the popularity of graphical user interfaces
(GUI) in other platforms (MacOS, Windows X, and OS/2 Warp) indicate, user interac-
tion with computing systems is becoming more intuitive. Given the explosion in multi-
media information management systems and graphical information displays, we
decided to analyze the object-oriented capabilities of graphical user interfaces. These
GUI environments provide direct object manipulation features. They allow users to
represent and interact with visual objects using familiar physical metaphors. This book
uncovers the object-oriented characteristics of the most popular GUT systems.

This book is intended for a wide variety of audiences. At small and large corpora-
tions, MIS managers and professionals can use the book to understand the impact of
object orientation on their end users. The book will serve the needs of software engi-

Preface m ix

neers and computer scientists who are interested in object-oriented systems and want
a global perspective on the subject. At universities, it could be a supplementary text for
programming languages and software engineering courses, or a graduate course dedi-
cated to object-oriented systems. The book is also suitable for short courses, continuing
education, and professional self-study. Prerequisites in data structures, compilers, oper-
ating systems, performance evaluation, and databases will be useful.

Chapter 1 gives a brief introduction to object-oriented concepts. It examines the
evolution of object orientation in languages, databases, and user interfaces. It also pre-
sents examples used commonly throughout the book.

The key object-oriented concepts covered in this book are abstract data typing,
inheritance, and object identity.

Chapters 2 through 4 provide detailed and self-contained exposure to all the
aspects of these foundational concepts.

Chapter 2 discusses the concept of abstract data typing. It describes in detail the
mechanisms of hiding the implementation of an object’s interface routines. Abstract
data typing enhances code extensibility and reusability. The chapter also clarifies and
differentiates commonly used object-oriented terms, such as classes, instances, methods,
and messages.

Chapter 3 discusses the concept of inheritance. Through inheritance, one can
build new classes or software modules on top of an existing, less specialized hierarchy
of classes, instead of redesigning everything from scratch. The new classes can inherit
both the behavior and the representation of existing classes. Inheritance enhances soft-
ware extensibility, reusability, and code sharing.

Chapter 4 surveys the concept of object identity. Object identity allows the
objects in an application to be organized in arbitrary graph-structured object spaces.
The chapter shows the superiority and generality of the strong notion of object identity
when compared to the conventional techniques of referencing objects in programming
languages and databases. Three disciplines have been most influential in the evolution
of object-oriented technologies; object-oriented languages, object-oriented databases,
and object-oriented user interfaces.

Chapter 5 provides an overview of object-oriented analysis and design method-
ologies. The chapter demonstrates how a step-by-step software design and imple-
mentation methodology can be used to construct powerful applications with object
technology. It also provides brief descriptions of a number of popular OOAXOOD
methodologies, including Booch, Rumbaugh, and Shlaer/Mellor.

Throughout Chapters 2, 3, and 4 are numerous illustrative examples in some of
the most common object-oriented languages, such as Smalltalk. However, we dedicate
two chapters to popular object-oriented languages. Chapter 6 discusses languages such
as Smalltalk, Ada, and Eiffel. We have chosen Smalltalk since it started the object-
oriented revolution, Ada because of its popularity in government, and Eiffel since it
represents a modern object-oriented language. Chapter 7 concentrates on C++,
describing its main features through illustrative examples. C++ already is the system
development language of the 1990s. The chapter, which is self-contained, will provide
the reader with a firm grasp of the language.

X MW Preface

Chapter 8 covers the emerging field of object-oriented databases, which combine
the object-oriented concepts of abstract data typing, inheritance, and object identity
with database capabilities. These database capabilities include the support of persistent
object spaces, transactions, recovery, querying, and versioning of objects. The chapter
discusses the object-oriented features of several object-oriented database management
systems from both research and industry.

Chapter 9 illustrates the enormous impact of object orientation on the design and
presentation of the modern user interfaces. This chapter covers such concepts as the
direct manipulation of objects and the application of predefined class hierarchy
libraries for user-interface components. It also discusses some of the modern graphical
user interfaces in use today and describes the object-oriented interface layers pre-
sented to both end users and application developers.

Chapter 10 presents an overview of standardization efforts in object technologies.
In this chapter we examine standardization in the areas of object sharing and interoper-
ability and databases. Object sharing and interoperability have become very hot topics
in the 1990s. We examine Microsoft OLE2, CILab’s OpenDoc, and Object Management
Group’s CORBA. In the area of databases, we examine the ODMG-93 standard, which
provides a framework for interoperability and sharing among object-oriented database
vendors.

ACKNOWLEDGMENTS

We would like to extend our appreciation to people who helped us with this book.
Above all we want to thank our wives—Silva Khoshafian and Suzanne M. Abnous—
for their support and patience. We would also like to express our gratitude to our edi-
tors: Diane Cerra and Tammy Boyd. We are grateful to all those who helped us with the
first edition of our book—and contributed to its success.

Walnut Creek, California SETRAG KHOSHAFIAN
Danville, California RAZMIK ABNOUS
July, 1995

Contents

1

INTRODUCTION

1.1 Introduction to Object Orientation
1.1.1 Object Orientation for All Users
1.1.2 What Is Object Orientation?
1.1.2.1 Abstract Data Types
1.1.2.2 Inheritance
1.1.2.3 Object Identity
1.1.2.4 Object-Oriented Analysis and Design
1.1.3 Programming Languages, Databases, and Interfaces

1.2 History and Evolution
1.2.1 'The Evolution of Object Orientation in Programming Languages
1.2.2 Evolution of Object-Oriented Databases
1.2.2.1 Network and Hierarchical Models
1.2.2.2 The Relational Model
1.2.2.3 Semantic and Functional Data Models
1.2.2.4 Extended and Object-Relational Models
1.2.2.5 Nested Relational and Complex Object Models
1.2.3 The Evolution of Object Orientation in User Interfaces

1.3 Summary

13

19

20
21
22
22

25
30

Xi

xii m Contents

2

ABSTRACT DATATYPES

2.1

2.2

23

24

25

2.6

2.7

Introduction

2.1.1 Data Types

2.1.2 From Data Types to Abstract Data Types

2.1.3 The Object/Message Paradigm

2.1.4 Modularization through Procedures versus Objects
2.1.4.1 Modeling of the Real World
2142 Autonomy
2.1.4.3 Generation of Correct Applications
2.1.44 Reusability

2.1.5 Summarizing the Benefits of Abstract Data Typing

2.1.6 Chapter Organization

Classes

2.2.1 Instance Values

2.2.2 Methods and Messages
2221 The Method Body

2.2.2.2 Implicit Parameters and the Pseudovariable “Self”

2223 Accessor and Update Methods
2.2.3 Creating and Destroying Objects

2.23.1 Creating Objects in Object-Oriented Languages
2232 Destroying Objects and Garbage Collection

in Object-Oriented Languages

2.2.3.3 Garbage Collection Strategies and Algorithms

2.2.4 Class Extensions
Collections 67

Overloading
Dynamic Binding

Parametric Polymorphism or Genericity
2.5.1 Parametric Abstract Data Types
2.5.2 Just Syntactic Sugar?

Constraints
2.6.1 Constraints on Object and Instance Variables
2.6.2 Pre-and Postconditions of Methods

Summary

33

33
34
35
39
41
41
41
43
43
44
44

44
47
50
51
52
53
54
56

57
59
66

69
69

72
73
74

75
76
76

77

Contents B Xiii

3

INHERITANCE

3.1

32

33

34

3.5

3.6

3.7

Introduction

3.1.1 Inheritance in Knowledge Representation
3.1.2 Inheritance in Object-Oriented Languages
3.1.3 The Different Facets of Inheritance

3.1.4 Chapter Organization

Inheritance and Subtyping
3.2.1 Subtyping
3.2.1.1 Subsets as Subtypes
3.2.1.2 Subtyping of Structured Types
3.2.2 Contrasting Inheritance with Subtyping
3.22.1 Implicit Subtyping versus Explicit Inheritance
3.22.2 Subtyping and Dynamic Binding
3.2.23 What Do Classes Inherit?

Class Inheritance
3.3.1 Inheriting Instance Variables
33.1.1 Redefining Instance Variables
3.3.1.2 Hiding Instance Variables
3.3.2 Inheriting Methods
3.3.2.1 Method Overriding
33.22 Invoking Superclass Methods
3.3.2.3 Constrained Overriding
3.3.2.4 Inheriting the Interface
3.3.2.5 Excluding Superclass Methods

Metaclasses

3.4.1 Explicit Support

3.4.2 Implicit or Hidden Metaclasses

3.43 Object-Oriented Languages without Metaclasses

Object Inheritance
3.5.1 Prototype Systems and Delegation

Multiple Inheritance

3.6.1 Linearization

3.6.2 Forbidding Conflicts—Renaming Strategies
3.6.3 Qualified Instance Variable and Methods
3.6.4 The Meet Operation

3.6.5 Evaluating the Strategy

Summary

78

78
78
80
82
85

85
85
86
88
89
91
92
94

95

98

98
100
104
105
107
108
113
114

116
117
120
122

123
125

130
134
135
136
137
138

138

xiv m Contents

4

OBJECT IDENTITY

4.1

4.2
43

4.4
4.5

4.6

4.7

5

Introduction
4.1.1 So What’s the Big Deal about Object Identity?
4.1.2 Chapter Organization

Referencing Objects in Programming Languages

Object Naming
4.3.1 Path Names in Operating Systems

Identity Through Identifier Keys

The Type/State/Identity/ Trichotomy
4.5.1 Object Spaces with Identity
4.5.2 Implementation Techniques
4521 Persistence
4522 The Implementation Strategies

Operations with Identity

4.6.1 The Different Facess of Equality
4.6.2 The Different Facets of Copying
4.6.3 Merging and Swapping

Summary

OBJECT-ORIENTED ANALYSIS AND DESIGN

5.1

5.2
53
5.4

Introduction

5.1.1 Modeling Software Development Process

5.1.2 Object-Oriented Analysis and Design

5.1.3 Object-Oriented Programming: How Much Should We Design?
5.1.4 Too Many Methodologies!

Invention, Aspirations, and Requirements
Object-Oriented Analysis

Defining Object-Oriented Design
5.4.1 Coarse-Grained Design
5.4.2 More Detailed Design
5.4.3 Design Specifications

140

140
140
141

141

147
147

149

151
154
158
158
160

164
165
170
172

175

176

176
178
180
180
182

183
184

188
189
190
192

Contents ® Xxv

5.5 Semantic and Entity Relationship Modeling 194
5.5.1 Semantic Data Modeling Background 194
5.5.2 Entity Relationship Modeling 197
5.5.3 Contrasting Design for Databases and OOA/OOD 200
5.5.4 Double Design 201

5.6 Overview of Existing Methodologies 202
5.6.1 Booch’s OOA and OOD Approach 204
5.6.1.1 Requirement Analysis 204

5.6.1.2 Domain Analysis 204

5.6.1.3 Object-Oriented Design 206

5.6.2 The OMT OOA and OOD Approach 210
5.6.2.1 Object-Oriented Analysis 210

5.6.22 Object-Oriented Design 211

5.6.23 Object Diagrams 211

5.6.24 Dynamic Model 213

5.6.2.5 Functional Model 214

5.6.3 Shlaer and Mellor OOA and OOD Method 215
5.63.1 Partitioning into Domains 216

5.6.3.2 Objects and Information Model 217

5.6.3.3 Lifecycles and State Transition Diagrams 218

5.6.3.4 Object Communication Development 219

5.6.3.5 Action Data Flow Diagrams 219

5.63.6 OOD in Shlaesand Mellor 221

5.7 Summary 222
OVERVIEW OF OBJECT-ORIENTED LANGUAGES 223
6.1 Introduction 223
6.2 Small Talk 223
6.2.1 Abstract Data Typing 224
6.2.1.1 Object Creation and Manipulation 224

6.2.1.2 Class Definition 225

6.2.1.3 The Object Class 227

6.2.2 Inheritance 228
6.2.2.1 self and super Pseudovariables 229

6.2.22 Abstract Classes 230

6.2.3 Polymorphism 230
6.2.3.1 Method Overriding 231

6.2.3.2 Operator Overloading 231

6.2.3.3 Parametric Polymorphism 232

XVi

m Contents

C++

6.3

6.4

6.5

7.1

6.2.4
6.2.5

Ada
6.3.1
6.3.2

6.3.3

6.3.4

6.3.5

Eiffel
6.4.1

6.4.2

6.4.3

6.4.4

Object Identity
Container Classes

Object-Oriented Concepts in Ada
Types

6.3.2.1 Subtypes Definition

6.3.2.2 Derived Type Definition

6.3.2.3 Type Discriminants
Abstract Data Typing and Packages

6.3.3.1 Package Specification

6.3.3.2 Referencing Packages

6.3.33 Package Body

6.3.3.4 Private Type Declaration
Polymorphism

6.3.4.1 Overloading

6.3.4.2 Parametric Polymorphism and Generic Units
Ada 9X

6.3.5.1 Inheritance

6.3.5.2 Dynamic Binding

6.3.5.3 Abstract Classes

Abstract Data Typing
6.4.1.1 Object Creation
6.4.1.2 Information Hiding
6.4.1.3 Assertions—Pre/Postconditions
Inheritance
6.42.1 Export Status
6.4.2.2 Feature Adaptation
6.42.3 Repeated Inheritance
6.42.4 Deferred Class
Polymorphism
6.43.1 Overloading
6.43.2 Generic Classes
Object Identity

Summary

Introduction

7.1.1

Chapter Organization

233
234

235
235
235
237
238
239
240
240
241
243
243
244
244
246
251
251
254
254

255
255
256
256
257
259
259
259
262
263
263
264
264
266

266

267

267
267

Contents m Xxvii

7.2 Object Orientation in C++ 268
7.3 Pros and Cons of C++ 269
7.3.1 Advantages 269
7.3.2 Disadvantages 269

7.4 Class Definition 270
7.4.1 Class Construct 270
7.4.1.1 Member Function 271

7.4.1.2 The this Pointer 272

7.4.2 Constructors and Destructors 272
7.42.1 When Are Constructors or Destructors Called? 275

7.4.3 Friend Functions and Classes 275
7.4.4 Struct and Union 277
7.44.1 Struct 277

7.44.2 Union 278

7.4.5 Inline Functions 279
7.45.1 Declaring Inline Functions 280

7.4.6 Static Members 280

7.5 Inheritance in C++ 281
7.5.1 Private Base Class 283
7.5.2 Extending a Class Declaration 283

7.5.3 Inheritance and Constructors/Destructors 284
7.5.4 Protected Members 285
7.5.5 Virtual Functions 285
7.5.6 Multiple Inheritance 287
7.5.6.1 Construction/Destruction and Multiple Inheritance 288

7.5.6.2 Virtual Base Class 288

7.5.6.3 Resolving Ambiguity 289

7.6 Overloading/Overriding and Dynamic Binding in C++ 290
7.6.1 Function Overloading 290
7.6.2 Dynamic Binding 291
7.6.3 Operator Overloading 292

7.7 Templates 295
7.7.1 Templates in General 295

7.7.2 Template Functions 295
7.7.3 Template Classes 297

7.8 Streams in C++ 298
7.8.1 Streams in general 299
7.8.1.1 Stream States 300

7.8.1.2 Streams Class Definition 300

7.8.2 Extending Stream I/O Definition 301

7.9 Case Studies 303

7.9.1 Case Study One—Complex Numbers 303

m Contents

8.4.2.2 Lock Modes

7.9.1.1 Complex Numbers 303
7.9.1.2 Supporting a Complex Number System in C++ 304
7.9.2 Case Study Two—Electronic CAD 309
7.9.2.1 Computer-Aided Design 310
7.9.2.2 Design and Implementation of ECAD Components 311
7.9.2.3 An ECAD Sample Program 315
7.10 Summary 316
OBJECT-ORIENTED DATABASES 320
8.1 Introduction 320
8.1.1 What is an Object-Oriented Database? 321
8.1.2 Overview of DBMS Concepts 322
8.1.3 Approaches to Object-Oriented Databases 323
8.1.4 Organization of the Chapter 325
8.2 Foundation and Evolution of Object-Oriented Databases 325
8.2.1 Integrity Constraints of Object-Oriented Databases 329
8.3 Persistence in Object-Oriented Databases 331
8.3.1 Alternative Strategies for Persistence in Object-Oriented Databases 332
8.3.2 Defining and Manipulating Persistent Object-Oriented Databases 334
8.3.3 Extending a Database Language with Object-Oriented Capabilities 335
8.3.3.1 Case Study: Intelligent SOL 336
8.3.3.2 Case Study: UniSQL 340

8.3.4 Extending An Existing Object-Oriented
Programming Language with Database Capabilities 341
83.4.1 Case Study: OPAL: Making Smalltalk 342

a Database Language

8.3.4.2 C++ Classes for Database Management Capabilities 343
8.3.43 Case Study: Versant 346
8.3.44 Case Study: ObjectStore 346
8.3.5 Persistent Complex Object Storage Strategies 347
8.3.5.1 Case Study: ObjectStore 348
8.3.5.2 Case Study: GemStone 349
8.4 Transactions and Concurrency Control in Object-Oriented DBMSs 350
8.4.1 Long Transactions 352
8.4.1.1 Nested Transactions 353
8.4.1.2 Cooperating Transactions 353
8.4.2 Concurrency Control 354
8.42.1 Locking 354

356

