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Preface

Application environments are becoming increasingly fast-paced and complex. There is
great diversity in the way information is accessed, manipulated, and presented. Infor-
mation is no longer centralized; it is distributed on networks of heterogeneous envi-
ronments. Different generic products and tools attempt to simplify a user’s interactions
with information systems. Unfortunately, the diversity and the lack of integration
among these products often force users to learn multiple-user interface paradigms,
obtuse operating system scripts, and different key-stroke commands.

There is an enormous need for integration, simplicity, and ease of use across all
products. But simplicity and ease of use come at a price. The simpler and more intuitive
the environment, the more complex the underlying software system must be to support
and implement it. To meet the computational needs of emerging applications, software
must be modular, extensible, maintainable, and robust. It must be manageable. This
means the model of the real world and its implementation in the system should not be
too far off.

Object orientation is an enabling software technology that attempts to fulfill
these increasingly demanding computational needs. The potential of object technology
stems from:

1. The proficiency of its higher-level object-oriented model, which also reduces
software cost and provides the designer with real-world programmable com-
ponents.

2. Its capability to share and reuse code with object-oriented engineering tech-
niques, reducing the time required to develop an application.

vii
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3. Its capability to localize nd minimize the effects of modifications through
object-oriented programming abstractions, allowing the software to encom-
pass more diverse algorithms and technologies.

This book clarifies the basic concepts associated with object orientation. It pro-
vides a clear yet comprehensive exposure to the fundamental ideas in object orienta-
tion. This is important since object orientation is often confused with certain languages,
such as Smalltalk, or particular user-interface paradigms, such as windows and icons.
Furthermore, a clear understanding of object-oriented concepts will allow the reader to
use object-oriented constructs in any programming language (including conventional
ones).

The book will give the reader a basic understanding of the main concepts of
popular object-oriented systems: languages, databases, and user interfaces. It also
elucidates object-oriented analysis and design methodologies and shows how the
object-oriented concepts manifest themselves in object-oriented software develop-
ment. Object orientation is above all a programming style that allows better organiza-
tion and modularization of large application programs. The book emphasizes the
concepts and the ideas for improving programming style, regardless of whether the
programmer uses an object-oriented programming language. Special emphasis is given
to C++ and to the newly emerging fields of object-oriented analysis and design, object-
oriented databases, and user interfaces.

Many programming languages are labeled or claim to be “object-oriented.” We felt
it was important to show how object-oriented concepts are reflected in these languages.
Simula and Smalltalk have played a historic role in the evolution of object-oriented sys-
tems and concepts. Nevertheless, we believe the most popular system development lan-
guages of the 1990s will be C++. Hence we devote an entire chapter to it.

The book also demonstrates the object-oriented concepts that manifest them-
selves in database applications. We felt the need to present a clear exposure of the
emerging field of object-oriented databases. These databases constitute the next evolu-
tionary step after relational databases; post-relational database management systems
will all have object-oriented features. This book demonstrates both the object-oriented
characteristics and database characteristics of several systems that claim to be object-
oriented databases.

As the emergence of Windows 95 and the popularity of graphical user interfaces
(GUI) in other platforms (MacOS, Windows X, and OS/2 Warp) indicate, user interac-
tion with computing systems is becoming more intuitive. Given the explosion in multi-
media information management systems and graphical information displays, we
decided to analyze the object-oriented capabilities of graphical user interfaces. These
GUI environments provide direct object manipulation features. They allow users to
represent and interact with visual objects using familiar physical metaphors. This book
uncovers the object-oriented characteristics of the most popular GUT systems.

This book is intended for a wide variety of audiences. At small and large corpora-
tions, MIS managers and professionals can use the book to understand the impact of
object orientation on their end users. The book will serve the needs of software engi-
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neers and computer scientists who are interested in object-oriented systems and want
a global perspective on the subject. At universities, it could be a supplementary text for
programming languages and software engineering courses, or a graduate course dedi-
cated to object-oriented systems. The book is also suitable for short courses, continuing
education, and professional self-study. Prerequisites in data structures, compilers, oper-
ating systems, performance evaluation, and databases will be useful.

Chapter 1 gives a brief introduction to object-oriented concepts. It examines the
evolution of object orientation in languages, databases, and user interfaces. It also pre-
sents examples used commonly throughout the book.

The key object-oriented concepts covered in this book are abstract data typing,
inheritance, and object identity.

Chapters 2 through 4 provide detailed and self-contained exposure to all the
aspects of these foundational concepts.

Chapter 2 discusses the concept of abstract data typing. It describes in detail the
mechanisms of hiding the implementation of an object’s interface routines. Abstract
data typing enhances code extensibility and reusability. The chapter also clarifies and
differentiates commonly used object-oriented terms, such as classes, instances, methods,
and messages.

Chapter 3 discusses the concept of inheritance. Through inheritance, one can
build new classes or software modules on top of an existing, less specialized hierarchy
of classes, instead of redesigning everything from scratch. The new classes can inherit
both the behavior and the representation of existing classes. Inheritance enhances soft-
ware extensibility, reusability, and code sharing.

Chapter 4 surveys the concept of object identity. Object identity allows the
objects in an application to be organized in arbitrary graph-structured object spaces.
The chapter shows the superiority and generality of the strong notion of object identity
when compared to the conventional techniques of referencing objects in programming
languages and databases. Three disciplines have been most influential in the evolution
of object-oriented technologies; object-oriented languages, object-oriented databases,
and object-oriented user interfaces.

Chapter 5 provides an overview of object-oriented analysis and design method-
ologies. The chapter demonstrates how a step-by-step software design and imple-
mentation methodology can be used to construct powerful applications with object
technology. It also provides brief descriptions of a number of popular OOAXOOD
methodologies, including Booch, Rumbaugh, and Shlaer/Mellor.

Throughout Chapters 2, 3, and 4 are numerous illustrative examples in some of
the most common object-oriented languages, such as Smalltalk. However, we dedicate
two chapters to popular object-oriented languages. Chapter 6 discusses languages such
as Smalltalk, Ada, and Eiffel. We have chosen Smalltalk since it started the object-
oriented revolution, Ada because of its popularity in government, and Eiffel since it
represents a modern object-oriented language. Chapter 7 concentrates on C++,
describing its main features through illustrative examples. C++ already is the system
development language of the 1990s. The chapter, which is self-contained, will provide
the reader with a firm grasp of the language.



X MW Preface

Chapter 8 covers the emerging field of object-oriented databases, which combine
the object-oriented concepts of abstract data typing, inheritance, and object identity
with database capabilities. These database capabilities include the support of persistent
object spaces, transactions, recovery, querying, and versioning of objects. The chapter
discusses the object-oriented features of several object-oriented database management
systems from both research and industry.

Chapter 9 illustrates the enormous impact of object orientation on the design and
presentation of the modern user interfaces. This chapter covers such concepts as the
direct manipulation of objects and the application of predefined class hierarchy
libraries for user-interface components. It also discusses some of the modern graphical
user interfaces in use today and describes the object-oriented interface layers pre-
sented to both end users and application developers.

Chapter 10 presents an overview of standardization efforts in object technologies.
In this chapter we examine standardization in the areas of object sharing and interoper-
ability and databases. Object sharing and interoperability have become very hot topics
in the 1990s. We examine Microsoft OLE2, CILab’s OpenDoc, and Object Management
Group’s CORBA. In the area of databases, we examine the ODMG-93 standard, which
provides a framework for interoperability and sharing among object-oriented database
vendors.
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