. BESSEL FUNCTIONS -
F ‘X  FOR -' |
- ENGINEERS B

N. W. McLachlan

SECOND EDITION

j

E..
K

h

3

;

3

3

]

»5“"

m

¢




T03.2 '3;0441L ﬁ__y 5E]
BESSEL FUNCTIONS

FOR ENGINEERS

BY
N. W. McLACHLAN

D.Sc. (ENGINEERING) LONDON
PROFESSOR OF ELECTRICAL ENGINEERING, EMERITUS,
UNIVERSITY OF ILLINOIS,

WALKER-AMES PROFESSOR OF ELECTRICAL ENGINEERING,
UNIVERSITY OF WASHINGTON (1954)

SECOND EDITION

OXFORD
AT THE CLARENDON PRESS
1965



»

Ozxford University Press, Amen House, London E.C.4

GLABGOW NEW YORK rORONTO MELBOURNE WELLINGTON
BOMBAY CALCUTTA ) DRAS KARACHI CAPE TOWN IBADAN

Geoffrey Cumberlege, Publisher to the University

¥IRST EDITION 1934
REPRINTED 1041, 1945, 1948
SECOND EDITION 1955

PRINTED IN GREAT BRITALN



PREFACE TO THE SECOND EDITION

THE first edition of this book was published in 1934 as an experimental
venture, when the standard of technical mathematics in colleges and
universities was relatively low. There has been some improvement
since 1934, but the standard is still lower than it should be. It could
be raised if the subject were taught by those interested in the practical
applications. In my experience, the elements of Bessel functions can
be taught in a fourth-year undergraduate engineering course. A
more extensive course, covering all the material in this book, should
be given at graduate level. In the first edition, to effect simplification,
the reader was expected to take a good deal for granted. After an

interval of twenty years, in virtue of the improved standard of’

technical mathematics, as much rigour as seems to be desirable for
engineers has been introduced in the present edition. The working
of various problems, their meticulous correction by the teacher, and
reworking by the student where necessary, is desirable to obtain
results satisfactory to'both parties. Each problem should be set out
in the form of a technical essay in good English, so that the student
will acquire experience in precise and logical thinking. Once the
habit has been formed, it sticks!-—as I know from experience.

The text of the first edition has been rewritten and extended in
scope. Some of the old sections, and about half of the too numerous
problems at the ends of the chapters, have been removed to make
room for new subject-matter. The text and also the list of formulae
has been increased by 50 per cent., the references by 30 per cent.,
while eight new Tables of the functions have been added. In brief,
the book is essentially new. The practical applications now include
the following : buckling of columns and variable struts ; eddy current

«

furnaces ; loudspeaker horns; oscillation of cylinder in viscous fluid ; -

oscillation of water in circular lake; radial temperature distribution
in engine cylinder wall; resistance of solid and tubular conductors
to alternating current; scattering of sound by circulsr cylinder;
sound distribution from rigid and flexible circular disks; tapered
loaded electrical transmission lines ; vibration of circular membranes
and plates, and of non-uniform bars ; water waves in canals of variable
breadth, and also of variable depth. In virtue of this comprehensive
selection, it is hoped that the book will be of interest to a larger circle
of readers than before.
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PREFACE TO THE FIRST EDITION

TaE use of Bessel functions in research and design work is now
so extensive that the theory and its applications may well find a
place in the technical training of those destined to be engineers. The
three well-known treatises by Gray, Mathews, and MacRobert,
Nielsen, and Watson, whilst of great value to pure and applied
mathematicians, are not suitable for engineers, whose main purpose
is the application of the functions to practical problems. Consequently
this volume has been written specially for engineers, so that they can
become familiar with that part of the theory which is required in
~applied analysis. The book will be useful in connexion with Chapters
II to VI of the author’s treatise on Loud Speakers. At the same time
it may serve also to introduce the functions to students reading in
applied mathématics. The treatment is simple yet rigorous enough
for engineers, whilst the text contains many worked examples
illustrating various analytical processes. No prior knowledge,
beyond that which should be obtainable in an engineering degree
course, is required, and the sequence of the chapters has been arranged
with this in view. The functions have not been introduced via
Laplace’s equation, since this approach is more in keeping with the
outlock of the mathematician than with that of the engineer. For the
benefit of teachers it may be said that the subject-matter has been
used for a course of lectures to practising engineers with sucocess.
Owing to space limitations the theory and the more detailed parts of
the practical applications have been curtailed in places, but nothing
of fundamental importance to engineers has been omitted. For the
same reason there is no mention of contour integrals or of Heaviside’s
operators. The reader who desires to supplement his knowledge can
do so by aid of the reference list at the end of the book. Where
necessary, practical analysis has been shorn of its technicalities,
whilst references to the original works are given to enable the reader
to complete his studies. Including subdivisions, there are approxi-
mately 600 examples to be worked out by the reader. Many of the
examples ave either practical problems or represent practical analysis
dissected to effect simplification. Those devoid of a practical basis
are included to facilitate understanding and memorization of the
more important formulae. This is a sine qua mon in mathematical
work, since it is rather hazardous to solve practical problems with a
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book in one hand and a pen in the other without a proper knowledge
of the processes involved. A list of important formulae is given for
reference purposes, but additional formulae will be encountered in
the examples. No attempt has been made to print a comprehensive
set of tables, since these are available elsewhere. The tables have
been selected chiefly to suit the requirements of acoustical and
electrical engineers, the entries being given to four significant figures,
which is ample for most engineering purposes.

The author is indebted to the Syndies of the Cambridge Univer-
sity Press for permission to use entries from G. N. Watson’s Bessel
Functions to complete Tables 6, 8, 9, 11, 12; to the Committee of
the British Association for permission to publish Tables 17-24; also
to- Professor H. B. Dwight and the American Institute of Electrical
Engineers for permission to reproduce Tables 25, 26. He is also
indebted to Mr. R. R. M. Mallock for Tables 27, 28, giving the polar
values of the ber and bei functions, which are abridgements of five-
figure tables computed by him in 1928. The polar form has been
suggested by Kennelly, Laws, and Pierce, who computed tables which
are reproduced in the Report of the British Association, 1923. Tables
are also given in Funktionentafeln by JJalinke and Emde. The polar
form has been generalized in Chapter VIIT and new formulae are
developed which simplify analysis involving ber, bei, ker, and kei
functions. The polar values of the ker and kei functions, viz. Ny(z),
$o0(2), Ni(2), ¢,(z), were not available when the manuscript was
completed. They will be found in a paper by Mr. A. L. Meyers and the
author, entitled “The polar form of the ker and kei functions and its
application to eddy current heating’, which is published in the
Philosophical Magazine, 18, 610, 1934.+

Professor T. M. MacRobert has criticized the manuscript and read
the proofs from the view-point of the pure mathematician, whilst
Messrs. C. R. Cosens, R. R. M. Mallock, and A. L. Meyers have
done likewise from the view-point of the engineer-mathematician.
Mr. Meyers generously undertook the herculean task of checking the
examples. The author has great pleasure in expressing his apprecia-
tion of the excellent suggestions made by these gentlemen.

t Tables 29, 30 in the present edition.

N. W. M.
LONDON

September 1934



SYMBOLS

TaE symbols used for various physical quantities are defined in the text. The
order of a Bessel function is represented by m or n when integral, but by porv
when unrestricted, unless stated otherwise. The symbols for the various Bessel
functions are given below:

Jn(2), J(2) Bessel function of the first kind.

Yo(2), Y, (2) ’s ' 35 second kind, as defined by Weber.
HP(z), HP(z) 5 o5 - third kind.

H;‘f)(z)’ H?)(Z) 9 7 2 2 ”

Ea(z), € (2) Cylinder function. [

I.(z), 1,(z) Modified Bessel function of the first kind.

K, (2), K,(2) v 53 5 ,,» second kind.

H,(z), H(z) Struve function.
L,(2), L,(z) Modified Struve function.

: stei, z
S,(z) = sterl(z)+steil(z), i,(2z) = tan‘lm.
M,(2), M(z) +J(beriz-+beilz), .(berjz-+beijz).
bei, z bei, z
—~1 n =1 v
Bulz), 6,(2) tan ber,z’ ™ ber,z

N,(2), N,(z) J(kerz+keidz), (ker)z+kei}z).

(), $.(2) — kei,z o kei, z

ker,z’ ker,z"
Wiz) = % %’E::cos(ﬁl——ﬂo—-iﬂ), the dissipation or loss function (Chap. VIIT).
0
T(z) = %%—l—-g;ﬂin(ﬂl—eo—fn’), the penetration function (Chap. VIII).
0

Jvm signifies the mth zero of J,(z).

Yom 9 ” 39 29 Y,(Z).

- 40 signifies that zero is approached from the positive or the negative side.

O means ‘of order’.

~ signifies ‘approximately equal to’.

~ signifies that the right-hand side is an asymptotic formula, valid when the .
argument, or the order of the function, is largeenough, as the case may be.

+ signifies ‘is not equal to’. ~ ‘

= signifies ‘is identical to’.

R(v) signifies the real part of ».

In dealing with the ber and bei functions (Chap. VII), the symbols ¢, 7=}
are used to represent e*7i, ¢x¥m, thereby avoiding the symbols 4/(7), J(—1) as
these are apt to lead to confusion owing to the ambiguity in sign. Thus we take
as standard functions Jy(zi') = berz+ibeiz and Jy(zit) = ber;z+ibei,z,
whereas some European writers use Jy(zvi) = Jy(2it) = ber z—ibeiz and,
Jy(2vi) = Jy(zi¥) = —ber,z+ibei;z. When using tables, care must be taken .
to ascertain which functions have been tabulated. The values of the various
complex quantities involved are shown in Fig. 25. In analysis it is sometimes
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expedient to use e+ instead of i*” to gvoid possible error in the ultimate
phase angle. .

In works on pure mathematics some writers use amp z, whilst others prefer
argz, to signify the angle of inclination of the vector representing a complex
quantity to the positive real axis. From the view-point of an engineer or a
physicist, neither of these symbols says what it means, nor does it mean what
it says! Amp signifies ampere or amplitude, and, if the latter, the maximum
value of an oscillation is implied, which corresponds to the modulus of the
complex quantity, but not to an angle. Argz implies the independent variable
orargument of a function, such as z in J,,(z). Consequently, to avoid ambiguity,
we shall use ‘phase 2’ or  to denote the angle of the vector with the positive

real axis.
z

{ s gnifies an indefinite integral.
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SHORT HISTORICAL INTRODUCTION;
FUNCTIONS OF ORDER ZERO; APPLICATIONS

1.10. Introduction

BesseL functions, like many other branches of mathematics, had
their origin in the solution of physical problems. Particular cases of
these functions occurred in the solutions of differential equations over
a century before the advent of the famous memoir written by the
German astronomer F. W. Bessel in 1824 and published in 1826.
Consequently, the nomenclature ‘Bessel Function’ did not exist prior
to 1826.

In 1732 Daniel Bernoulli, a Swiss mathematician well known for
his theorem in hydraulics, studied the problem of the oscillation of a
heavy flexible chain suspended with its lower end free. He obtained
a differential equation of the type

dy ldy k%

2 zdz " 2 =0 (1)
which may be transformed to the same form as that given by Bessel
about a century later. Bernoulli’s problem is considered in §§ 5.20—
5.24. L. Euler, also a Swiss mathematician of the eighteenth century,
so well known to engineers for his long strut formula, investigated the
vibration of a stretched circular membrane in 1764, and obtained a
differential equation identical in form with that now accepted as the
generalized Bessel equation. He studied Bernoulli’s problem also in
1781, and calculated some of the early zeros pertaining to the first
solution of (1). During the solution of an astronomical problem in
1770, the French mathematician J. L. de Lagrange arrived at an
equation whose solution, presented in the form of an infinite series,
involved coefficients now coupled with Bessel’s name. An investiga-
tion of the coefficients obtained by Lagrange was conducted some
years later by the Italian mathematician F. Carlini and the French
analyst P. S. de Laplace.

The year 1822 is of singular importance in the history of mathe-
matics owing to the publication of J. B. J. Fourier’s treatise on The
Analytical Theory of Heat. This epoch-making work, which was
‘crowned’ in 1812, had adorned the archives of the Paris Academy of

8887.16 B



2 HISTORICAL INTRODUCTION I.1

Scienpes for about eleven years. Its publication was delayed for fear
that it should affect adversely the prestige of the powers that were.
In treating a problem on the distribution of temperature in a cylinder,
which was heated and then allowed to cool under certain conditions,
Fourier obtained a particular case of a Bessel equation and gave its
solution (zero order). Further analytical researches on the distribu-
tion of temperature in spheres and cylinders were published by the
French mathematician, S. D. Poisson, so well known to engineers
for his ratio o = 18{0 era.l strain —. Poisson’s work was associated
longitudinal strain

with functions of Bessel type.

To sum up the situation: prior to 1824, various particular cases of
a certain differential equation were investigated by mathematicians,
but no attempt was made to deal with these equations in a systematic
way, and the terminclogy ‘Bessel Functions’ did not exist.

1.20. Bessel’s coefficients
In 1824 F. W. Bessel studied a problem associated with elliptic
planetary motion. He found that an astronomical quantity, termed

~ the ‘eccentric anomaly’ 6, could be represented by an infinite series
of the form

f = y+A,sin y+d4,sin 2y+... (1
= x+ i 4, sinny, (2)
n=1
where x = (0—x'sin ). (3)

The coefficients 4,,...,4,, may be obtained by a process resembling
that used in the Fourier analysis of alternating currents. Assuming
that the right-hand side of (1) may be differentiated term by term, we

gob 40 = dy(1-+A, 008 y+24,008 2y+...). (4)

Multiplying each side by cosny, and integrating over the range
(0, 27r), yields

27
f cosny df = nwd,, (5)
0
since all integrals on the right-hand side vanish, except that involving
cos®ny. Thus 25
A4, = (1nm) [ cosny db. (6)
0
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‘Now x = (#—xsin ), so (6) may be written
on :
A, = (1/nm) j cos(nf—zsin 6) db, (7
0

where z = nx, » = 1,2,3,....
If we put A, = (2/n)J,(z), we obtain Bessel’s definition of the
functions which bear his name, i.e.

2w

J,(2) = (1/2m) f cos(nf—zsin 6) do. (8)
This function satisfies the diﬁe:entia.l equation
or 28 ‘—Z—i%-}-z %‘%-{- (2—n?y = 0, (10)

which is obtained on multiplying (9) throughout by 2z*.
We shall now show in the simple case n = 0, that (8) satisfies (9),
and, therefore, (10) also.

. o
Take 2mdy(z) =y = f cos(zsin 6) d6; (11)
0
2m 2m
then dy/dz= — f sin(z sin f)sin § d6 = f sin(zsin ) d(cos6) (12)
0
2m

= [cos #sin(zsin 0)]3"— z [ cos(z sin #)cos26 db, (13)
. .

om
80 y'lz = — J' cos(zsin f)cos?d db. (14)
0 ;

2w
Also, by (12), Y= —'J cos(zsin 0)sin2f do. (15)
0
Hence from (11), (14), (15)

2m
(1/2n){y"+y' [z+y} = (1/27) J. cos(zsin 8){ — (sin26+cos?6) 41} df = 0
0

. (16)

as required.
(9) is known as Bessel’s equation for functions of integral order n.
Tt is a linear differential equation of the second order having variable



4 FUNCTIONS OF ORDER ZERO 1.2

ocoefficients, namely 1/z and (1—n?/2?). By the theory of linear
differential equations, it has two distinct or linearly independent
solutions, i.e. one is not a constant multiple of the other.- J,(z) is
taken as the first solution, and the second will be introduced later on.
In virtue of its relation to the 4, in (1), J,(2) is sometimes called a
Bessel coefficient, but it is regarded more generally as a Bessel function
of the first kind of order 7.

1.21. First solution of Bessel’s equation

To illustrate the method of solution, we choose the simple case
where n in (9), § 1.20, is zero. The equation to be solved is then

1 dy
dz“’+ z dz

Following Frobenius, we assume that y may be represented by an
infinite power series of the form (see Appendix III)

y = 2{agt+a, z+ayg2itaz2t4...}, (2)

where p and the coefficients ag, @,, @,,... are to be determined. This
series is to be substituted into (1), and the series obtained by adding
the three sets of terms is to be equated to zero. Assuming for the
present that term by term differentiation of (2) is valid, we obtain

y = 2{ayta,zta. 22+ ..}
LI gty Ve et 2+ |
‘ +ag(ut-3)etay(p+4)2 ...},
' % = 2#{ag(u—Dpe24-a, plp+ 1)z ag(u+1)(p+2)+
+ay(p+2)(p+3)z+ay(n+3) (pt+4)22 ...}

If the sum of the three series is to vanish, the sum of the coefficients
of like powers of z must vanish also. Equating coefficients to zero, we
have ayp? = 0, a;(p+1)2 = 0, ag+ay(p+2)? = 0, a;4-a4(p+3)> = 0,
and so on. In the first case a,u? = 0,1 so either ay = Oorp = 0. For
the present, however, we shall not take either a, or u to be zero, as
the results obtained in this way will be useful later on. In the second
case a,(p+1)% = 0, 80 a; = 0 provided p 7% —1. Similarly

+y =0. (1)

g = a5 = @y = ... = 0,
t This is known as the indicial equation, since it serves to determine the index p.

v
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, Wode ay = —aof(u+2)?% ay = aof (p+2)*(p+4)%,

ag = —ao/(p+2)4(p+4)X(p+6)%
and so on. Inserting the various coefficients into (2) and writing
y, for y, we get

2% z - 2*
ne ““z"{l_ P ) vl R PR ) }
| (3)
We have seen that if y, is to satisfy (1), either a, or u must be zero.
Hence, if we put p = 0 and @y = 1 in (3), we obtain

4y = dfe) = {1—@z>2+‘(—’};§—‘(§—’3§+m} @

={ 22+2:442 2. 42 6"Jr } Z( (%rz')):r )

This series and its derivatives are absolutely convergent for all
finite values of z real or complex, and uniformly convergent in any
=bounded region of the z-plane (see Appendix II). It represents Jy(z),
the first solution of (1), and is defined to be Bessel’s function of the
first kind of order zero. Since Jy(z) = Jy(—=2), it is an even function
of z. In virtue of uniform convergence, Jy(z) and its derivatives are
continuous functions of z finite, term by term differentiation of their
geries representations being valid. Ifin (8),§1.20, we put # = 0, then
expand the integrand and integrate term by term (see Appendix II,

§ 4), (4) above is reproduced.

1.22. Zeros

An alternating function of z real has zeros at intervals which need
not be equal. It may be represented sometimes by a power series
having terms with both positive and negative signs.f For instance,
if z is real, cosz,*which is represented by the alternating series

22 2t
—ot s (1)

is an alternating periodic functioni having amplitude unity. An alter-
nating series, however, does not necessarily represent an alternating
t If all terms have the same sign in a givenrange of ¢, the function cannot alternate

therein,
i Repeats itself exactly at a constant interval.
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function. The exponential function e-#, which is represented by the
alternating series ( %~)2 (1)

e LT (2)

is monotonic (devoid of osciﬂation), and tends to zero as z -> --oo0.
Squaring each term and keeping the original signs, we get
2 24 26
—ptE g maet T ) @)

Now the series in (1), (3) both have the form > (—1)a,2%, and since
r=0

cos z vanishes when z has certain (real) values, we ask whether Jy(2)
has this property too. We accept the result proved in [124], that
Jp(2) has an infinity of simplet real zeros.

It is interesting to find that by squaring each term of the alternat-
ing series (2), which represents a positive monotonic function, and
preserving the original signs, a series is obtained which represents a
function having an infinite number of zeros.

1.23. Computation of the first zeros of Jy(z)
Neglecting all but the first three terms in (3), § 1.22, we put tentatively

24/(20.4%) —2Y22 +1 = 0, o=
so that 20 —1622+4+64 = (22—8)%2 = 0. (2)
Thus 2z ~ +2:828, (3)

and these values are a first approximation to the frst zeros of Jy(z).] T'o obtain a
second approximation, we now include the term in 25 from (3), § 1.22. Writing
y = 22/4, we get the equation

y3—9y* 436y —36 = 0. (4)
Inserting y = 1-4, 1-5 in succession, the left-hand side has the respective values
—0-504, 1-125, so one root of (4) lies between y = 1-4 and 1-5. Referring to
Fig. 1, by interpolation

z = 0-1x0-504/(1-125+0-504) ~ 0-0309. (5)

Then the value of the root 1s
y ~ 1-4309, (6)
g0 2~ 4-2(1-4309)F ~ 12-392, ) (7)

which is a second approximation to the first zeros of Jy(z).
To obtain a third approximation, we employ Taylor’s theorem for |k small

in the abbreviated form
Jolz+h) = Jy(z)+hJg(2). (8)

t The graph crosses the z-axis, but is never tangential to it.

1 Applying this procedure to (1), § 1.22, yields z ~ --1-59, whereas the true values
are -+4n ~ +1-5708. The accuracy exceeds that in (3), becauss z ~ 4 1-59 com-
pared with +2-828. In the latter case the terms omitted from the series (3), § 1.22,
are, theretfore, of greater relative importance than those omitted from (1), § 1.22.



