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The Isometric Group of Nonrigid Molecules

1 Introduction

At the present time the conventional concept of molecular structure is appropriately
based on the Born-Oppenheimer approximation'). Molecular structure is commonly
understood as relative nuclear configuration, which may be considered as stable in
the sense of one criterion or another. Many such structures may be characterized by
a continuous set of nuclear configurations, which deviate only infinitesimally from
each other (quasirigid molecules, sometimes called rigid molecules). Experimental
research has revealed a large number of molecular structures which have to be de-
scribed by a continuous set of nuclear configurations defined by structural param-
eters (bond length, bond angles, dihedral angles, etc.), some of which vary over
finite domains. Molecules of this type will be called nonrigid molecules.

For quasirigid molecules a symmetry concept has been used very early in some
branches of molecular research, e.g. stereochemistry >’ 3). This symmetry concept was
based on the concept of isometric mappings® and formed the basis of extended
applications to molecular dynamics since 1930, developed first by Wigr_ierﬁ.

Attempts to construct symmetries of nonrigid molecules have first been made
by Hougen®, Longuet-Higgins”), and Altmann® ). All these procedures wete based
on the symmetries of the molecular Born-Oppenheimer operator, i.e. on the Schrd-
dinger operator for a system of nuclei and electrons. In particuler #® Longuet-
Higgins concept uses the intuitive concept of feasibility, which says that 3 perfituta-
tion of nuclei corresponds to a feasible operation, if the permutation cossesponds.io
a path on the Born-Oppenheimer surface involving only points of low potential
energy. Hence, the elements of the Longuet-Higgins group are permutations and
formal combinations of permutations and inversion. The whole concept lacks well
defined mathematical tools for determination of transformation properties of energy
operators, multipole operators and functions of the dynamical coordinates. Never-
theless, the concept has been applied to a number of specific examples, typical cases
have been discussed by Hougenlo), but since its publicatidn, the Longuet-Higgins
concept has'not been cast into a rigorous tool. Already before the Longuet-Higgins
approach the symmetry of the rotation-internal motion problem of nonrigid mole-
cules has been studied by direct investigation of the symmetry group of the rotation-
internal motion hamiltonian. Typical examples of this direct approach have been
given by Howard" ), Wilson'?), Wilson et al.'?.

The method presented here has been motivated by the desire to find a method
which starts from the geometrical description of nuclear configurations and replaces
the feasibility concept by rigorous mathematical definitions. Furthermore, it allows
the determination of transformation properties of operators and functions by the
methods used generally in applications of group theory to quantum mechanical
problems in strict analogy to the treatment of quasirigid molecules within the frame-
work of the covering symmetry group (molecular point symmetry group).

The approach presented in this contribution is a review of a method published in
papers by Bauder et al.'® and Frei et al.'%: '), It is based on the concept of the iso-
metry of nuclear configurations and therefore may be considered as a natural general-
ization of the concept of covering symmetry of rigid point sets to nonrigid point sets.

3
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In Chap. 2 the construction of the isometric group of semirigid nuclear configura-
tions is presented, starting from the geometrical definitions of a semirigid model.
Furthermore, the relation between isometric groups and the permutation-inversion
group will be discussed. A number of applications of isometric groups, in particular
to the dynamics of the rotation-large amplitude internal motion problem in classical
and quantum mechanical formulation, to transformation properties of irreducible
tensor operators and selection rules for irreducible tensor operators up to rank 2
(Wigner-Eckart theorem) are discussed in Chap. 3. Use of the isometric group to
stereochemical problems of nonrigid molecules is presented, in particular for ques-
tions of chirality and classification of stereoisomers. In Chap. 4 relations of the iso-
metric groups of semirigid models to the familiar symmetry approach for quasirigid
molecules and to the symmetry groups of the associated nonrigid molecules are
discussed.

For Chaps. 2 and 3 a number of examples will be given. Furthermore, techniques
used for practical calculation of isometric groups and their application to problems
of molecular geometry and dynamics will be collected in a series of appendices.

2 Construction of Isometric Groups
2.1 Definitions

By a nuclear configuration (NC) we understand the set of informations

NC{Xk, Zx, M} consisting of the coordinates Xy, the masses My and charge num-
bers Zy of the nuclei 1, 2, . . ., K of a molecular system. The coordinate vectors will
be referred to a coordinate system, which will be defined when required. Important
coordinate systems will be the laboratory system (LS, basis ;l) and the frame system
(FS, basis € f). The latter is attached to the nuclear configuration by a prescription to
be defined in each case. The relation between €' and e * may be expressed by

fyofy — .| D(e) x*
{£'x" = {¢'0} [0 i ] (2.1)

where D(€) = R(e) is a rotation matrix parametrized by the eulerian angles afy
(abbreviated by €), as defined in Appendix 1. X' stands for the origin of the FS with
respect to the LS. For the dynamical problem X' will be chosen as center-of-mass co-
ordinate of the NC.

The relative nuclear configuration RNC {Xy (£), Zy, My} is defined as the set of
informations determining a NC up to translations and rotations in &7 3, i.e. invariant
with respect to transformations of the inhomogeneous three-dimensional rotation
group 10(3). Conveniently the RNC is determined by internal structural parameters
£1,&2, ..., E3K.¢ Which are invariant with respect to (w.r.t.) [0(3).

A molecule will be called rigid (quasirigid) if its internal structural parameters
are constant (may vary only infinitesimally). The term semirigid model (SRM) will
be used for a molecular model, whose nuclear configurations are defined by

4
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1, 2, .., f< 3K-6 internal coordinates which vary over finite domains, whereas the
remaining 3K-6-f coordinates remain constant. The introduction of the SRM
is motivated by the fact that its isometric group is isomorphic to the symmetry
group of the associated nonrigid molecule (NRM), i.e. to the molecule with the same
f finite and 3K-6-f infinitesimal internal coordinates (cf. Chap. 4). In practical cases
the number of finite internal coordinates does not exceed 3 or 4 and remains always
small in comparison to 3K-6.

If a NC of a SRM is considered from a suitably defined FS the coordinate vectors
may be expressed as functions of the internal coordinates &, &,, . .., &¢. The
RNC {Xg(£), Zy, My } is then completely defined by the values of &, . . ., & and the
constant structural parameters. Further classification of SRMs may be based on the
2, 3, ... rigid parts, whose relative positions are determined by the finite coordinates
€1, &2, ... . Such parts are often denoted as frame (F), top (T), invertor (I), etc.
Moreover each part may have its own local covering symmetry and the complete
NC {Xk (%), Zy, M} may have a proper covering symmetry group ¢ (&) for arbitrary
values of the internal coordinates. Typical SRMs are listed in Tables 1, 2 and 3.

To each NC we associate a graph .+~ {P(my(Zy, My)), K(dkk')}, consisting of the
set P of vertices m, valued by charge and mass number of the nucleus k and the set K
of edges (my, mx’), valued by the internuclear distance dyy'(£)

dik’ (8) = | Xk (§) — Xy (8)] (2.2)

A" is a complete (universal) valued graph. In many cases it is sufficient to consider
the graph ./~ {P(m(Zy)), K(dgy’)} in which the vertices my are valued by the nuclear
charge only. This is appropriate in all cases in which isotope effects within the Born-
Oppenheimer approximation may be neglected.

2.2 Isometric Group of a SRM

The isometric group of a SRM will be constructed from two subgroups:
(i) internal isometric group .# (¥)
(ii) covering group ¢ (£)

Since most of the nonrigid molecules treated so far may be described by a SRM
whose covering group is the improper group C,, the internal isometric group is treated
first.

2.2.1 Internal Isometric Group .# (§)

From the definition (2.2) it is seen that the distances dy,' are functions of the internal
coordinates. The set of transformations

E=F() (2.3)

which map the graph _#~ onto itself, conserving incidence, forms a group .7 (£), the
group law being the usual composition of functions. Mappings of the graph _#" onto
itself are defined as
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F:P>P,K-K

F(m(Zi, M) = ¢ (Zg, Mg) €EP, k. k €[1,K] (2.4)
where Zy = Zy, Mg = My

F(di (8) = dg’ (8) €K (i), ¥ die () 2.5)

The transformations &' = F(§) will be called internal isometric transformations. They
transform any NC to a NC with the same set of distances. In many cases they may
be expressed as linear inhomogeneous transformations

(- (4 #0) 5o

To the isometric transformation (2.3) we will associate the operator ﬁF, defined by
A
Pph(£) = h(F~'(§)) (2.7)

where h(£) is any admissible function of £. Application of ﬁp to the substrate
{dxk’ (£)}, i.e. to the set of distances dyy’ ordered in a row yields

A —

_ /\7]_/ L T e ( )
Pp {dkk (8)} = {dxk' (F~ (§)} = {dyi ()} T ¥ 7 (F) (2.8)
The last equation expresses the fact that the set of distances is mapped by ﬁF onto
itself, therefore the matrix I'+*"“ )(F) is a permutation matrix of dimension

K) . . .. .
( 2) . 1.g. intransitive. The matrix group
rre) (7} .= (0 ¢ )F)IE,F,, Fs,...} (2.9)

is a representation of the isometric substitutions ¢’ = F(£) by permutation matrices.
The symbol .# (&) will henceforward be used as the abstract group % (§) :=
{E, F,, ...} represented either by

l

{ }:=]l (A(F) aw))‘VFe;«-(s)]

oM 7 0 1

orby "¢ ) { g} := {17 )(F) IVF € 7 (§)}

If the distances dy’ () € K(dyy’) possess a common primitive period p w.r.t. the
internal coordinates

(2.10)

de (8 + p) = diw (8), VK, k' E€[1,K], (2.11)

the coordinates involved in the transformations (2.6) have to be taken modulo their
respective primitive periods. The implication of the existence of primitive periods
will be discussed in Sect. 2.2.2. -

The operators IA’F, F € 7 (¥) will next be applied to the basis {Xg(£)},i.e. to
the (transposed) coordinate vectors referred to the frame system et ordered in a row:

9
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Pe (Xu(®)} = (Xi(F(8)} = (X (9)} TI(F) @ TO(F) -
= Xi(®)} - TNO(F) '
Thereby the matrix I1(F) denotes a K-dimensional permutation matrix and rGF)
a 3 by 3 orthogonal matrix. The form of this representation follows from the fact
that each isometric transformation maps the NC {Xy, Z,, M\ } onto a NC which by
definition has the same set of distances, i.e. is isometric to NC {Xy, Z,, My }. Expressed
alternatively, the nuclear configurations NC {X (%), Zy, My } and NC {Xi (F~(¢)),
Zy, My } are properly or improperly congruent up to permutations of nuclei with
equal charge and mass for any F € F (£). The set of matrices Eq. (2.12) forms a
representation of % (£) by linear transformations and will furtheron be denoted by

rNED { &} .= {TI(F) ® TO)(F) IV F €.7 (£)} (2.13)

the index f indicating reference to the frame system. In general 'N¢D { %} decom-
poses into transitive systems, since each subset of identical nuclei, which is mapped
by all elements of .7 onto itself gives rise to such a system. The group theoretical
relation between o/ {# } and TNCH { %7} is an isomorphism

A F}E pNeD gy (2.14)

The isomorphism strictly holds for SRMs without primitive period isometric
transformations only (cf. Sect. 2.2.2). However, as will be shown in Sect. 2.2.2, the
group theoretical relations derived in this section also apply for SRMs with primitive
period transformations if % is replaced by an appropriately extended group . .
The sets

{7} := {II(F) IVFE . (§)} (2.15)
and I'® { %} := {T®)(F) | VF € #(¥)} (2.16)

form each a representation of .5 (£). The first set consisting of all permutation
factors of I'"(NCP { 577} is isomorphic to the permutation group I'(+*"# ) { 577} this
follows from a theorem given by Harary'?, relating vertex and edge group of a
complete graph.

The group r'® {9} (abstract group %), consisting of all different rotational
parts of I'(NCf) is a finite group of orthogonal matrices in 27 3 and must be a sub-
group of O(3). It therefore must be one of the point symmetry groups C,, S,,, Dy,
Crvs Cans> Dats Dnds T, Tg, Thy O, Op. T'® { %7} will play an important role in most
applications of isometric groups. It pictures the set of all orthogonal matrices, which
map a reference NC on to all possible isometric NCs.

[n general the group theoretical relation between I'™NCD { 57} and I'®) { %7}
is a homomorphism 7:

7:TMNCD o 1O 5} (2.17)

whose kernel is given by

10



