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Preface

Over the last three decades, studies on constitutive models and numeri-
cal analysis methods have been well developed. Nowadays, numerical
methods play a very important role in geotechnical engineering and in a
related activity called computational geotechnics. This book deals with
the constitutive modeling of multiphase geomaterials and numerical meth-
ods for predicting the behavior of geomaterials such as soil and rock. The
book provides fundamental knowledge of continuum mechanics, con-
stitutive modeling, numerical methods for multiphase geomaterials, and
their applications. In addition, the monograph includes recent advances
in this area, namely, the constitutive modeling of soils for rate-dependent
behavior, strain localization, the multiphase theory, and their applications
in the context of large deformations. The presentation is self-contained.
Much attention has been paid to viscoplasticity, water—soil coupling, and
strain localization.

Chapter 1 presents the fundamental concept and results in continuum
mechanics, such as motion, deformation, and stress, which are necessary
for understanding the following chapters. This chapter helps readers make
a self-consistent study of the contents of this book.

Chapter 2 deals with the governing equations for multiphase geomaterials
based on the theory of porous media, such as water-saturated and air—
water—soil multiphase soils including soil-water characteristic curves. This
chapter is essential for the study of computational geomechanics.

Chapter 3 starts with the elastic constitutive model and reviews the fun-
damental constitutive models including plasticity and viscoplasticity. For the
plasticity theory, the stability concept in the sense of Lyapunov is discussed.
At the end of the chapter, cyclic plasticity and viscoplasticity models are
presented with kinematical hardening rules.

In Chapter 4, failure criteria and the Cam-clay model are reviewed. For the
failure criteria, many well-known criteria have been proposed in this chaprer,
from Coulomb’s criterion to Matsuoka—Nakai’s criterion. Then, the Cam-
clay model is reviewed since the model includes a description of the basic
properties of soil behavior such as dilatancy and the critical state concept.

XV



xvi Preface

Chapter 5 is devoted to the rate- and time-dependent behavior and
modeling of soils. At first, typical rate- and time-dependent behaviors of
soils are reviewed based on the experimental measurements. Several rate-
dependent models are discussed and elastoviscoplastic models based on
the Cam-clay model and Perzyna’s viscoplasticity theory are presented.
Adachi and Oka’s model is first described and then an elastoviscoplastic
model considering structural degradation is introduced. The chapter ends
with the calibration of these models using the experimental results.

In Chapter 6, the virtual work theorem is presented and then the finite
element method for two-phase materials is described for quasi-static and
dynamic problems within the framework of the infinitesimal strain theory.

Chapter 7 deals with a typical multiphase phenomenon of soils; namely,
the consolidation problem. In particular, the effects of sample thickness on
consolidation, using Aboshi’s well-known data, and the anomalous behav-
ior of pore water development in the clay foundation beneath the embank-
ment, during loading and after the end of construction embankment, are
numerically analyzed.

Chapter 8 starts with a review of the study on the strain localization
behavior of soils. Several issues related to the strain localization are then
discussed for rate-independent and rate-dependent models. Finally, a
numerical analysis of the strain localization of water-saturated clay is pre-
sented for triaxial tests and practical problems.

In Chapter 9, a liquefaction analysis method is presented with a cyclic
elastoplastic model using the two-phase theory presented in Chapter 2 for
water-saturated soils. Applications of the liquefaction behavior to a man-
made island during an earthquake and of the soil-pile-structure interac-
tion are shown.

Chapter 10 deals with recent advances in geomechanics. It includes the
temperature-dependent behavior of soils such as consolidation due to the
change in temperature, and the numerical analysis of air-water—soil cou-
pled problems; namely, the deformation—seepage flow coupled analysis of
an unsaturated river embankment is presented.
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Chapter |

Fundamentals in
continuum mechanics

In this book, we use vectors and tensors in components, and the direct
notations for these vectors and tensors are given without further explana-
tion. A dot denotes a contraction of the inner indices, for example, a,b; =
a- b sothat A;B; = A:B.

1. MOTION

The position of the material point X;(i=1,2,3) of a body at time ¢ is
expressed by

x:=5€,‘(x,,t) (1.1)

Material point X; can be given by the position of x; at a time ¢ = 0.
Equation (1.1) expresses the motion of the material point of the body.
The rectangular Cartesian coordinates used in this book are described by
(0,1,22,23) with origin o and unit base vector é.

There are two methods for describing the motion of a particle. One is the
material description, in which the motion is expressed by material point X,
and the other is the spatial description, in which the motion is expressed
by spatial coordinates x;. The material description is called the Lagrangian
description and the spatial description is called the Eulerian description.

The velocity vector of a particle is given by

gy = 22K 1) (1.2)
ot

In the material description, the acceleration of a particle in a body is
expressed by

a, =M (1.3)
ot
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In the spatial description, on the other hand, the acceleration of a particle
is given by

_ i(x;.1) - dv;(x;,t) (1.4)
ot oxy

a;

1.2 STRAIN AND STRAIN RATE

1.2.1 Strain tensor

Strain is the change in shape or the change in volume of a body during the

application of force to the body. We need an objective measure of strain

that can be derived through changes in the variation of the line element.
Let us consider the motion of the body shown in Figure 1.1. Material

points P and Q have moved to points P’ and Q" after the deformation.

Points Q and Q” are the points located in the vicinity of points P and P”.
Distance, dS, between points P and Q, is given by

ds* =dX,dX, (1.5)

and the distance between points P” and Q” after the deformation, ds, is
given by

ds* = dx,dx,, (1.6)

where the summation convention is used for a,b =1,2,3.

X3, X3

Figure I.I Motion.



