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PREFACE

The astonishingly rapid development of the technology of high-
speed computing machines in recent years has been accompanied by a
very substantial growth of the mathematical science of numerical
analysis. It is no longer possible to do justice to all important aspects
of this discipline in one volume. In fact, several branches of the
theory, and especially the numerical aspects of differential equations,
have become substantial enough to warrant accounts in more than one
monograph.

There are many numerical methods for solving partial differential
equations. Of these, only one stands out as being universally ap-
plicable to both linear and nonlinear problems—the method of finite
differences—and we deal exclusively with that method. The literature
on difference methods for partial differential equations is growing
rapidly. It is widely scattered and differs greatly in viewpoint and
character. A definitive presentation of this field will have to wait
until the present period of intense development has come to at least
a temporary halt. In the meantime, we believe that a connected ac-
count of many of the more important results and methods available
at this time will serve a useful purpose.

We have tried to keep on a middle ground with respect to the choice
of subject matter and the level of presentation. Most of the book
ought to be understood by readers with a firm grasp of what is usually
taught in a good course in advanced calculus and with some knowledge
of matrix theory. Without this prerequisite no real understanding of
any but the most elementary aspects of partial differential equations
is possible. On the other hand, we do not presuppose a previous knowl-
edge of the theory of partial differential equations, since this would
have seriously limited the usefulness of the book. We have excluded
topics that have no direct bearing on numerical analysis, such as
existence and uniqueness proofs based on finite-difference approxima-
tions. At the other extreme, little attempt has been made to serve
as a guide for programmers or to include many numerical examples.
The numerical solution of partial differential equations is no easy
matter. Almost every problem arising out of the physical sciences
requires original thought and modifications of existing methods. A
general knowledge of the theoretical background and the known

vii
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methods is almost indispensable for work on such problems, and this
is what we have tried to give.

With minor exceptions, the numerical solution of difference equa-
tions corresponding to partial differential equations is so enormous a
task that it is carried out only with automatic digital computers. For
the reader who has had little experience with these machines, Sec. 3
provides some general background about them. In Sec. 25 we discuss
in some detail certain algorithms for obtaining and solving difference
equations on automatic computers.

The authors were colleagues for some years in the numerical analysis
research program at the University of California, Los Angeles, a pro-
gram founded by the National Bureau of Standards. The book
originated in notes prepared by us for a graduate seminar at the uni-
versity, and was finished at the encouragement of Professors C. B.
Tompkins and I. S. Sokolnikoff. The book is directed to several groups
of readers: (i) pure and applied mathematical analysts; (ii) program-
mers of automatic digital computing machines; (iii) engineers, physi-
cists, meteorologists, and others with an interest in using machines
to solve partial differential equations; and (iv) graduate students in
these fields. Though this was not designed as a textbook, we have
used drafts of the book in graduate lectures at our present universities.

Thanks are due the Office of Naval Research, the Office of Ord-
nance Research of the U. S. Army, the National Science Foundation,
and the Mathematics Research Center of the U. S. Army at Madison,
Wisconsin, who collectively have supported most of the work on this
book at Stanford University, at the University of California, Los
Angeles, and at the University of Wisconsin. We wish to thank three
graduate students who read much of the manuscript and suggested
innumerable improvements: William B. Gragg, Jr., James Ortega, and
Betty Jane Stone. Finally, we wish to thank Mrs. Ruthanne Clark,
Miss Barbara Spiering, and Mrs. Carolyn Young for their exceptionally
responsible typing and other assistance.

GEORGE E. FORsYTHE

WoLrGaNG R. Wasow
Stanford University,
University of Wisconsin,
December 10, 1959
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INTRODUCTION TO
PARTIAL DIFFERENTIAL EQUATIONS
AND COMPUTERS

SECTION 1. REMARKS ON THE CLASSIFICATION OF
PARTIAL DIFFERENTIAL EQUATIONS

Let us consider, for the purpose of preliminary orientation, the three
differential equations

Uzy + u,, = 0, (11)
Upg — Uy = 0, (1.2)
Uy — u, = 0. (1.3)

(The subscripts indicate partial differentiation.) They are the prototypes
of many important partial differential equations met in the physical
applications of mathematics.

As in the theory of ordinary differential equations, one might ask for
the “‘general” solution of such a partial differential equation, but the
general solution can be found even more rarely than for ordinary differen-
tial equations; and when found, it seldom helps much in answering the
questions important to the mathematical physicist. In the applications
one is usually concerned with the calculation of a solution which, in
addition to the differential equation, satisfies certain subsidiary require-
ments, such as boundary or initial conditions. For linear (but generally
not for nonlinear) ordinary differential equations the desired solution can
frequently be found by appropriately determining the arbitrary constants
occurring in the general solution. For partial differential equations this is
only possible in exceptional cases, one reason being that the general
solution now involves arbitrary functions instead of arbitrary constants.

The last remark can be illustrated with equation (1.1). This equation,
which is known as Laplace’s equation and commonly denoted by V2u = 0
or Au =0, has a close relationship to the theory of analytic functions.
Set 2 = z + iy and let

f2) = u(z, y) + iv(z, y)
1



2 INTRODUCTION Sec. 1

be an analytic function of z. Then u and v are related by the Cauchy-
Riemann differential equations

u, — v, =0, u, + v, =0, (1.4)

and possess partial derivatives of all orders (Knopp [1945], pp. 28-30). If
the first of these equations is differentiated with respect to x and the second
with respect to y, it is seen that

u(z, y) = Re f(z) (1.5)
is a solution of Laplace’s equation. Conversely, we now show that
every solution of Laplace’s equation is the real part of some analytic
function. Let a solution u be given; then equations (1.4) can be solved
for v, since the compatibility condition of these two equations is precisely
Laplace’s equation for u. The quantity u(z, y) + i v(z, y) is then (Knopp
[1945], p. 30) an analytic function f{(z) of the complex variable z = = + iy;
i.e., (1.5) is valid. Hence (1.5) is the general solution of (1.1).

The solutions of Laplace’s equation are frequently called harmonic (or
potential) functions, and two harmonic functions which are linked by the
Cauchy-Riemann equations (1.4) are said to be conjugate.

The general solution of equation (1.2) can also be calculated without
difficulty, for, if u,, and u,, are continuous, the change of variables

E=ax+ vy, n=x—1Y, u(x,y)=w(5,77)
changes (1.2) into
Wen = 0,

which is solved by
w = F(§) + G(),

where F and G are arbitrary differentiable functions; if we require that
g, = w,., there are no other solutions. Hence

u(z, y) = F(x + y) + G(x — ) (1.6)

is a solution of (1.2), provided F and G are twice differentiable but other-
wise arbitrary. [The second derivatives of F and G need not even be
continuous for (1.6) to be a solution, as can be verified by inserting (1.6)
into (1.2).]

The subsidiary conditions that are imposed on the solution of a differen-
tial equation in a problem of mathematical physics vary with the nature of
the problem. We give a few extremely simple but typical examples.

(a) Consider a rigid wire whose orthogonal projection on the (z, y)-
plane is a simple closed curve C. This frame is to contain an ideal elastic
membrane of uniform density under uniform tension. Let u(x, y) denote
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the deflection of this membrane measured from the (z, y)-plane. If uand
its derivatives are so small that higher powers of u, u,, u, can be neglected
by comparison with smaller ones, # can be shown to be a harmonic
function in the interior R of C. The values of u on the boundary C are,
of course, the prescribed deflection f of the wire frame. Hence u is a
solution of the problem

Au = 0in R, u=fonC (1.7)

(Courant and Hilbert [1953], p. 247). This is frequently called Dirichlet’s
problem for Laplace’s equation. For this and other problems, it is
important to keep in mind that the solution cannot be expected to have
second derivatives, much less to satisfy the differential equation at the
boundary points unless f is a rather smooth function. By saying that u
assumes the prescribed boundary values one means that u(z, y) tends to these
values as the point (z, y) approaches the boundary from the interior.

(b) Along, straight, narrow rod performs elastic longitudinal vibrations.
In a mathematical idealization let the rod be represented by the z-axis, and
denote by u(x, f) the deflection from the rest position at time ¢ of the point
which, at rest, has the abscissa z. If u(z, t) is small and the units are
suitably chosen, u is a solution of the differential equation u,, — u,, = 0,
the simplest form of the differential equation of wave propagation
(Sokolnikoff and Sokolnikoff [1941], p. 367). On physical grounds we
expect the values of u at any time to be uniquely determined if the initial
deflection u(x, 0) and the initial velocity u,(x, 0) are prescribed. We are
thus led to the problem of finding u(z, t) for t > 0, if

u,, — u,, =0fort >0, u(z, 0) = f(x), uz,0) = g(x), (1.8)

where f(x) and g(z) are prescribed arbitrarily, except perhaps for certain
smoothness requirements which we do not intend to discuss at this
moment. This is an instance of an initial-value problem, or ‘“‘Cauchy’s
problem,” as it is sometimes called.

(¢) Again we consider a straight, narrow, infinite rod, but this time we
let u denote its temperature, whose dependence on x and ¢ we wish to
study. We assume that the rod is thermally insulated and that we know
the initial distribution of temperature u(z, 0). It is physically plausible
that the subsequent temperature distribution u(x, ) is then uniquely
determined. One shows easily that the differential equation that ideally
governs the flow of heat in the rod is #, — u,, = 0, provided the units are
defined properly (Churchill [1941], pp. 15 ff.). The natural initial-value
problem in this context is therefore

Uy — Uy, = 0 for t >0, u(z, 0) = f().
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In the theory of ordinary linear differential equations a given equation
can usually be combined in many different ways with subsidiary conditions,
which may consist in prescribing data at one, two, or more points. Within
certain fairly wide limits such problems will generally have a unique
solution, provided the number of conditions matches the order of the
differential equation. It is a fact of fundamental importance that this is
no longer true for partial differential equations. This had been emphasized
and illustrated by Hadamard [1923], pp. 23-44.

He showed, for instance, that Cauchy’s problem for Laplace’s equation,

Au = 0 for t > 0, u(z, 0) = f(x), u,(z,0) = g(x) (1.9)

is, in a certain sense, not well posed. Let us consider, for example, the
special case that f(xr) = 0, and assume that u(z, y) solves (1.9) in some
region bounded below by a segment of the z-axis. Then we can make use
of two standard theorems on harmonic functions. The first states that a
harmonic function u(z, y) is an analytic function of each of the variables
z and y (Sommerfeld [1949], pp. 47-48). The second is a simple consequence
of the principle of reflection for analytic functions (Nehari [1952], pp.
183-187). It assures us that a function which is harmonic in a region
bounded in part by a straight line segment and zero on this segment can
be continued as a harmonic function onto and beyond this segment.
Since the derivatives of a harmonic function are themselves harmonic, we
conclude from these two facts that u,(z, y) is a regular analytic function
of z for y = 0; i.e., g(x) must be analytic. In other words, unless the
prescribed function g(x) belongs to the very special class of functions that
are analytic, problem (1.9) with f(x) = 0 has no solution. It is easy to
show, but we shall not do this here, that, if f(x) is not prescribed as
identically zero, it also must be analytic if (1.9) is to have a solution.

This severe limitation in the permissible choice of initial values might
at first glance be regarded as not very serious. For it is well known that
by virtue of Weierstrass’ approximation theorem any continuous function
can be approximated as closely as we wish by analytic functions, even by
polynomials (Courant and Hilbert [1953], pp. 65 ff.). This argument
would be valid if close approximation of the boundary values always
implied close approximation of the solution for ¥ > 0. This, however, is
not the case in our present problem. For a counterexample it suffices to
consider the initial values

flx) = e~ V" sin naz, g(x) =0,
where 7 is a positive integer. It can be easily verified that
-Va

u(z,y) =e cosh ny sin nx
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is a harmonic function with these initial values. As n—> co, the initial
data tend to zero with all their derivatives, while u(x, y) diverges rapidly
for y £ 0.

According to Hadamard, the discontinuous dependence on the initial
data precludes by itself any physical meaning for problem (1.9), because
physical data are by their nature only approximate. More generally,
Hadamard calls a problem of mathematical physics well posed if its
solution exists, is unique, and depends continuously on the data. 1t can be
shown that the problems (a), (b), and (c) are well posed. If a mathematical
problem of physical origin turns out not to be well posed, this usually
indicates that the formulation is incorrect or incomplete.

No permutation of the subsidiary conditions in problems (a), (b), and
(c) leads to a well-posed problem. We consider one such permutation as a
second example of a problem that is not well posed. Let

Uy — U, = 0in R, u = fon C, (1.10)

where R is a rectangle whose sides have slopes +1. Using again the
transformation £ = x + y, n =  — y, we change the differential equation
into w,, = 0 and the rectangle R into a rectangle R* with sides parallel
to the &, # axes respectively. Suppose that (1.10) possesses a solution.
Since w, does not depend on 7, and since w, is independent of &, the
boundary function f must be such that its tangential derivative has equal
values at corresponding points on opposite sides of the bounding rectangle.
In other words, for arbitrary f, even if severe smoothness restrictions are
imposed, problem (1.10) has no solution.

Partial differential equations can be classified according to the type of
subsidiary conditions that must be imposed to produce a well-posed
problem. In the case of linear differential equations of the second order
in two independent variables, this classification is easy to describe. The
most general differential equation of this type is

Au,, + 2Bu,, + Cu,, + Du, + Eu, + Fu + G =0, (1.11)
with coefficients that are functions of x and y. It is called elliptic, hyper-
bolic, or parabolic according as the determinant

A B
B C

is positive, negative, or zero. This classification depends in general on
the region of the (z, y)-plane under consideration. The differential
equation zu,, + u,, = 0, for instance, is elliptic for x >0, hyperbolic for
x < 0, and parabolic for x = 0.
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Each of the three simple equations we have been discussing in this
section is an example of one of these types: Laplace’s equation is elliptic,
the equation of wave propagation is hyperbolic, and the equation of heat
flow is parabolic. It can be shown that the subsidiary conditions imposed
by us in each case will generate well-posed problems also when combined
with more general differential equations of the respective type but not
when combined with differential equations of any other type.

For differential equations in more than two variables, for systems, and
for nonlinear differential equations, useful definitions of the concepts of
elliptic, hyperbolic, and parabolic character can also be given. We shall
introduce these as the need arises.

Recently, Hadamard’s position that only well-posed problems are
physically relevant has been questioned by several mathematicians. In
the case of certain initial-value problems for elliptic differential equations
of physical origin, numerical schemes have been suggested which should
approximate the exact solution even though the latter depends in dis-
continuous fashion on the initial values. But these investigations are as
yet too incomplete to warrant a description herein.

SECTION 2. SYSTEMS AND SINGLE EQUATIONS

Every single differential equation of order higher than one can be
written as a system of first-order equations. This is rather obvious. One
way of doing it is to introduce all derivatives of the dependent variable,
except those of highest order, as new unknown functions. Thus u,, — u,,
= 0 is equivalent to the system

u, =p, u, =g, pa:_qy:'o

for the three functions u, p, g.

For ordinary differential equations a converse of this statement is also
true: From a system of » first-order equations for » functions satisfying
certain mild regularity conditions one can derive one differential equation
of order n containing only one of these unknown functions. For instance,
from the two simultaneous equations f(z, u, v, u’,v") = 0, g(z, u, v, ¥, v') =
0, the unknown function » and its derivatives can be eliminated by first
solving for » and »’, which leads to two equations of the form

v=(x,u,u’), v =z, uu)



