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Preface

This book is intended to provide a few asymptotic methods which can be applied
to the dynamics of self-oscillating fields of the reaction-diffusion type and of
some related systems. Such systems, forming cooperative fields of a large num-
ber of interacting similar subunits, are considered as typical synergetic systems.
Because each local subunit itself represents an active dynamical system function-
ing only in far-from-equilibrium situations, the entire system is capable of
showing a variety of curious pattern formations and turbulencelike behaviors
quite unfamiliar in thermodynamic cooperative fields. I personally believe that
the nonlinear dynamics, deterministic or statistical, of fields composed of similar
active (i.e., non-equilibrium) elements will form an extremely attractive branch
of physics in the near future.

For the study of non-equilibrium cooperative systems, some theoretical guid-
ing principle would be highly desirable. In this connection, this book pushes for-
ward a particular physical viewpoint based on the slaving principle. The dis-
covery of this principle in non-equilibrium phase transitions, especially in lasers,
was due to Hermann Haken. The great utility of this concept will again be dem-
onstrated in this book for the fields of coupled nonlinear oscillators.

The topics I have selected strongly reflect my personal interest and ex-
periences, so that this book should not be read as a standard textbook. Neverthe-
less, the spirit by which the present theory is guided may stimulate those students
in various fields of science who are fascinated at all by the curiosity of the self-
organization in nature.

I am particularly grateful to Professor H. Haken who initially suggested that
I write a book on this subject. I wish to thank Dr. H. Lotsch of Springer-Verlag
for his patience in waiting for my never-ending manuscript. I am also indebted to
Mrs. K. Honda for painstaking typing assistance.

Kyoto, February 1984 Yoshiki Kuramoto
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1. Introduction

Mathematically, a reaction-diffusion system is obtained by adding some diffu-
sion terms to a set of ordinary differential equations which are first order in time.
The reaction-diffusion model is literally an appropriate model for studying the
dynamics of chemically reacting and diffusing systems. Actually, the scope of
this model is much wider. For instance, in the field of biology, the propagation
of the action potential in nerves and nervelike tissues is known to obey this type
of equation, and some mathematical ecologists employ reaction-diffusion
models for explaining various ecological patterns observed in nature. In some
thermodynamic phase transitions, too, the evolution of the local order parameter
is governed by reaction-diffusion-type equations if we ignore the fluctuating
forces.

One important feature of reaction-diffusion fields, not shared by fluid
dynamical systems as another representative class of nonlinear fields, is worth
mentioning. This is the fact that the total system can be viewed as an assembly of
a large number of identical local systems which are coupled (i.e., diffusion-
coupled) to each other. Here the local systems are defined as those obeying the
diffusionless part of the equations. Take for instance a chemical solution of some
oscillating reaction, the best known of which would be the Belousov-
Zhabotinsky reaction (Tyson, 1976). Let a small element of the solution be
isolated in some way from the bulk medium. Then, it is clear that in this small
part a limit cycle oscillation persists. Thus, the total system may be imagined as
forming a diffusion-coupled field of similar limit cycle oscillators.

We now turn to a Navier-Stokes fluid for comparison. The flow may be oscil-
latory as in, e.g., the Taylor vortex flow (DiPrima and Swinney, 1981). In this
case, however, it is apparently impossible to imagine such local dynamical units
as persistent oscillatory motion even after isolation. After all, every term on the
right-hand side of the Navier-Stokes equation represents “interaction” because it
involves a spatial gradient. In this respect, reaction-diffusion systems bear some
resemblance to thermodynamic cooperative fields which are also composed of
similar subunits such as atoms, molecules, and magnetic spins or, in a coarse-
grained picture, semi-macroscopic local order parameters. Furthermore, it may
happen in reaction-diffusion systems that the global dynamical behavior is
predicted, at least qualitatively, on the basis of the known nature of each local
dynamical system, whereas such a synthetic view hardly seems to apply to fluid
systems. It is also expected that the bulk behavior is much less sensitive to the
boundary effects in reaction-diffusion systems than in fluid systems. This implies
that in the former case the study of infinitely large systems would be of primary
importance; although different system geometries and boundary conditions may
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provide a variety of intriguing mathematical problems, they seem to be of
secondary importance at least from the physical point of view which we take in
this book.

We noted the analogy between reaction-diffusion systems and thermodynam-
ic cooperative systems. However, the former differ essentially from the latter in
that each local subsystem can operate in far-from-equilibrium situations so that
it may already represent a very active functional unit. It is this difference that
makes reaction-diffusion media capable of exhibiting the wealth of self-organiza-
tion phenomena including turbulence never met in equilibrium or near-equilib-
rium cooperative systems. In this book, we will concentrate on the fields of
oscillatory units which are coupled through diffusion or some other interactions.
For a variety of other aspects of reaction-diffusion systems, one may refer to
Fife’s book (1979a).

It may now be asked what sort of self-organization phenomena are expected
in this type of field. In considering this problem, the importance of the concept
“synchronization” or “entrainment” cannot be emphasized enough. This simply
means that multiple periodic processes with different natural frequencies come to
acquire a common frequency as a result of their mutual or one-sided influence.
In some literature, the former term is used in the more restrictive sense of the
oscillators’ phases also being pulled close to each other. In this book, however,
we will not be very strict in this respect because the very definition of relative
phase between two given oscillators, especially when they represent oscillators of
a different nature, is rather arbitrary. The importance of the function of syn-
chronization in the self-organization in nature may be realized from the fact that
what looks like a single periodic process on a macroscopic level often turns out to
be a collective oscillation resulting from the mutual synchronization among the
tremendous number of the constituent oscillators. The human heartbeat may
serve as an example of such a phenomenon. Because the component oscillators in
nature would never possess identical natural frequencies and, moreover, would
never be free from environmental random fluctuations, mutual synchronization
appears to be the unique possible mechanism for producing and maintaining
macroscopic rhythmicity. The problem of the onset of collective oscillation in
oscillator aggregates will be treated in Chap. 5.

Based equally on mutual synchronization, chemical wave propagation in
oscillatory reaction-diffusion systems generates an even more complicated class
of phenomena than the mere collective oscillations. Here again, the entire field
may be entrained into an identical frequency, whereas the local phases of oscilla-
tion may have different values. Such a view, although a little too idealized,
enables us to understand the origin of expanding target patterns as observed in
the Belousov-Zhabotinsky reaction. As implied from a number of problems in
condensed-matter physics and field theory, some field quantity for which the
phase is definable is expected to allow for topological defects arising from, e.g.,
phase jumps and phaseless points. Just as in superfluid helium and plane rotator
systems, there exist in oscillatory reaction-diffusion systems, too, vortexlike
modes which, in the latter case, develop into rotating spiral waves such as those
known in the Belousov-Zhabotinsky reaction. A simple theory of chemical waves
from the viewpoint of spatio-temporal synchronization and phase singularity will
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be developed in Chap. 6. Granted that mutual synchronization represents a key
mechanism in the self-organization in oscillatory media, it would be interesting
to ask what is brought about by its breakdown. This will partly be answered in
Chap. 7 where we try to relate it to the onset of turbulencelike behavior.

It is unfortunate that only little progress has been achieved in the past
towards the understanding of synchronization, pattern formation, and
turbulence in nonlinear self-oscillatory media and related many-body systems, in
spite of their great potential importance in the future. Although the present
theory, too, is far from complete, a particular physical viewpoint at least will be
seen to underlie the present book. In Part 1, such a viewpoint will be formulated
into some asymptotic methods, while Part 2 may simply be looked upon as their
demonstration through a number of specific problems. The underlying physics is
closely related to the slaving principle, whose conceptual importance in nonlinear
dissipative dynamics in general was emphasized by Haken and first demonstrated
by him in laser theory (Haken and Sauermann, 1963; Haken, 1983a,b).
Basically, the slaving principle claims the possibility of eliminating a large
number of rapidly decaying degrees of freedom. This principle manifests itself
most clearly near the bifurcation points where the system experiences a qualita-
tive change in dynamical behavior. The possibility of a great reduction of the
number of effective degrees of freedom and the resulting universality of the
evolution law form the physical basis of why the bifurcation theory can serve as a
most powerful tool in treating various self-organization phenomena.

It should be noted, however, that the slaving principle is such a general
concept that the standard bifurcation theory can embody only a part of this
concept on a more or less firm mathematical basis. Thus, the theory developed in
this book, although being based on the slaving principle, is not so much based on
the standard bifurcation theory. In fact, the kinds of self-organization pheno-
mena and turbulence we want to treat here are rather complicated and require so
many effective degrees of freedom that standard bifurcation theory does not
seem to be of much help. As a possible alternative, one may think of the bifurca-
tion theory of higher codimensions, which has shown an interesting development
in recent years (e.g, Guckenheimer, 1981). Unfortunately, however, the effective
degrees of freedom involved are still too few for our purposes. We are rather
interested in, so to speak, the bifurcations with infinitely high degeneracy, which
can in fact cover some physical problems of our concern. Although no rigorous
bifurcation theory seems available for such cases, this peculiar kind of bifurca-
tion is of much practical importance. This is because it arises quite commonly in
systems with great spatial extension, especially when the instability first occurs
for disturbances of sufficiently long spatial scales. As inferred from the fact that
the eigenvalue spectrum of the fluctuations around the subcritical state is then
almost continuous, the system dynamics can never be confined to a few-dimen-
sional manifold even in the vicinity of the bifurcation point. Or it may be better
to say that if the range of applicability of the usual bifurcation theory is
measured by some bifurcation parameter, it will be narrowed down to zero as the
system extension goes to infinity. Even in such highly degenerate bifurcations,
there exist a tremendous number of degrees of freedom which are rapidly decay-
ing and hence follow adiabatically the continuum of long-scale modes. Thus, the
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idea of the slaving principle itself is expected to work. Although lacking a
rigorous mathematical basis, some practical methods of dynamical reduction
appropriate for highly degenerate bifurcations were developed in some fluid-
dynamical problems such as the plane Poiseuille flow (Stewartson and Stuart,
1971) and the Rayleigh-Bénard convection (Newell and Whitehead, 1969). In
Chap. 2 we apply this kind of approach to simpler systems, i.e., oscillatory
reaction-diffusion systems, with a special emphasis on its formalistic contrast to
the ordinary Hopf bifurcation theory.

The utility of the slaving principle is by no means restricted to near-bifurca-
tion situations. In fact, in connection with the present concern, the slaving
principle is also applicable to systems of weakly coupled limit cycle oscillators in
general. A theoretical framework particularly suited for weakly coupled oscilla-
tors and systems analogous to them will be presented in Chaps. 3 and 4. Here the
simplification of the dynamics comes essentially from the fact that the amplitude
disturbances decay much faster than the phase disturbances. In conclusion, the
slaving principle enables us to contract the original dynamics to a much simpler
one which still retains a sufficiently large number of effective degrees of freedom
to admit a variety of self-organization and turbulent phenomena.

Finally, one should keep in mind the severe limitation of the present methods
in that they apply only to those phenomena associated with sufficiently long
space-time scales. It is under this restriction that the present theory can enjoy its
coherent character. A number of important phenomena in self-oscillating fields,
especially those for which the coexistence of short-scale and long-scale spatial
variations are important, are omitted. An important problem of this kind would
be the propagation of trigger waves in reaction-diffusion systems, i.e., waves
which are typical in non-oscillating excitable media but may arise also in systems
of highly distorted oscillations or relaxation oscillations. Some simple classes of
phenomena related to trigger waves may be dealt with by a method quite dif-
ferent from the present ones, for which the reader may refer to Ortoleva and
Ross (1975) and Fife (1976a, b, 1979b).



2. Reductive Perturbation Method

Small-amplitude oscillations near the Hopf bifurcation point are generally gov-
erned by a simple evolution equation. If such oscillators form a field through dif-
fusion-coupling, the governing equation is a simple partial differential equation
called the Ginzburg-Landau equation.

2.1 Oscillators Versus Fields of Oscillators

Many theories on the nonlinear dynamics of dissipative systems are based on the
first-order ordinary differential equations

ij(jt(—i=F,-(X1,X2,...,X,,;u), i=1,2,...,n,

which include some parameters represented by u; a more convenient vector form

2 _Fn @.1.1)
dt

is sometimes preferred. As a specific example, we mention the dynamics of chem-
ical reaction systems which are maintained uniformly in space. In this case, X
usually represents a set of concentrations of the chemical species involved, and u
may be taken to be the flow rate at which certain chemicals are constantly fed
into the system so that their consumption due to reactions may be compensated.

For some range of u, the system may stay stable in a time-independent state.
In particular, this is usually the case for macroscopic physical systems which lie
sufficiently close to thermal equilibrium. In many systems, such a steady state
loses stability at some critical value u. of u, and beyond it (say u > u.), gives way
to periodic motion. In the parameter-amplitude plane, this appears as a branch-
ing of time-periodic solutions from a stationary solution branch, and this pheno-
menon is generally called the Hopf bifurcation. For various mathematical
aspects of the Hopf bifurcation, one may refer to the book by Marsden and
McCracken (1976). In chemical reactions, the corresponding phenomenon is
called the onset of chemical oscillations. Besides chemical reactions, one may
point out many examples from electrical and mechanical engineering, optics,
biology, biochemistry, and possibly some other fields, for which ordinary-dif-
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ferential-equation models form a natural basis for mathematical analysis, so that
the appearance of oscillations may be understood in the way stated above.

As u increases further, the system may show more and more complicated
dynamics through a number of bifurcations. It may show complicated periodic
oscillations, quasi-periodic oscillations or a variety of non-periodic behaviors.
For instance, we know of the recent discoveries of fantastic bifurcation struc-
tures in the spatially homogeneous Belousov-Zhabotinsky reaction, see Hudson
et al., 1979.

Coming back to limit cycle oscillations shown by systems of ordinary dif-
ferential equations, this simple mode of motion still seems to deserve some more
attention, especially in relation to its role as a basic functional unit from which
various dynamical complexities arise. This seems to occur in at least two ways.
As mentioned above, one may start with a simple oscillator, increase u, and
obtain complicated behaviors; this forms, in fact, a modern topic. However,
another implication of this dynamical unit should not be left unnoticed. We
should know that a limit cycle oscillator is also an important component system
in various self-organization phenomena and also in other forms of spatio-
temporal complexity such as turbulence. In this book, particular emphasis will be
placed on this second aspect of oscillator systems. This naturally leads to the
notion of the “many-body theory of limit cycle oscillators”; we let many oscil-
lators contact each other to form a “field”, and ask what modes of self-organiza-
tion are possible or under what conditions spatio-temporal chaos arises, etc. A
representative class of such many-oscillator systems in theory and practical
application is that of the fields of diffusion-coupled oscillators (possibly with
suitable modifications), so that this type of system will primarily be considered in
this book.

In any case, we should begin with some investigation of the component
systems, i.e., limit cycle oscillators. Although the specific feature of limit cycle
oscillations (e.g., orbital forms, oscillation patterns, etc.) may vary greatly from
system to system, there exists one remarkable universal fact, namely, that all
systems come to behave in a similar manner sufficiently close to the onset of
oscillations. Mathematicians may say that this is a consequence of the center
manifold theorem. More physically, we are left with only a couple of relevant
dynamical variables close to criticality, whose time scales are distinguishably
slower than those of the remaining variables, so that the latter can be eliminated
adiabatically. As a result, (2.1.1) is contracted to a very simple universal equation
which is sometimes called the Stuart-Landau equation. In fact, Landau was the
first to conjecture the equation form (Landau, 1944), and Stuart was the first to
derive it through an asymptotic method (Stuart, 1960). In quite a different
context, specifically in laser theory, Haken and Sauermann (1963) derived a
similar but more general equation. We shall outline in Sect. 2.2 how the Stuart-
Landau equation is derived. The fact that dynamical systems can be reduced to
some simple universal systems is by no means restricted to this particular bifurca-
tion type. However, we do not intend in this book to present theories from such a
general viewpoint. The method employed in Sect. 2.2 is a well-known multi-scale
method, although there may be some possible variants leading to identical
results. A practical use of the theory in Sect. 2.2 lies in the fact that it enables
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us to calculate explicitly a certain constant (called the Landau constant)
appearing in the Stuart-Landau equation, whose sign determines the stability of
the bifurcating periodic solution. Otherwise, the Stuart-Landau equation itself is
not likely to arouse much theoretical interest, although it may have some value in
serving as an ideal nonlinear oscillator model.

So far, the discussion has been concerned with systems of ordinary differen-
tial equations. In many physical problems, partial differential equations describ-
ing processes in the space-time domain prove to be a more useful mathematical
tool. For instance, one may mention the Navier-Stokes fluids, chemical reactions
including diffusion, some ecological systems with migration, etc. Suppose that
oscillatory motions occur in any of these continuous media as some control para-
meter is varied, and consider how to describe them. It is true that if the system is
confined within a finite volume, the governing partial differential equations can,
in principle, be transformed into a discrete set of ordinary differential equations,
which describe the evolution of the amplitudes of the basis functions satisfying
prescribed boundary conditions. Although the system then involves an infinite
number of degrees of freedom, a mode-truncation approximation is usually
allowed. Thus, as far as the onset of oscillations is concerned, there seems to be
nothing theoretically new, compared to the bifurcation theory for systems of
ordinary differential equations. Specifically, the application of a multi-scale
method will lead to a Stuart-Landau equation again. (For a mathematical theory
of the Hopf bifurcation for systems of partial differential equations in bounded
domains, see Joseph and Sattinger, 1972; bifurcation analyses of reaction-dif-
fusion systems have been developed by Auchmuty and Nicolis, 1975, 1976, and
Herschkowitz-Kaufman, 1975.)

There may be some situations, however, where keeping to formal bifurcation
theories easily makes us overlook a fact of considerable physical importance. The
situation of particular interest in this connection seems to be when the system size
is very large. Then, formal bifurcation techniques applied near . cannot claim
full validity except in an extremely limited parameter range about u.. This is
basically because the eigenvalue spectrum obtained from the linearization about
the reference steady state is almost continuous for large system size, so that, in
addition to the couple of modes which are becoming unstable, a large number of
degrees of freedom come into play as soon as u deviates from u. (@ more detailed
description will be given in Sect. 2.3). Thus it is desirable that the Stuart-Landau
equation be generalized so as to cover such circumstances. People in the field of
fluid mechanics have developed theories in this direction, which proved to be
very useful in understanding instabilities (not restricted to the Hopf type) arising
in systems with large dimensions at least in one or two directions. Typical
examples are the Newell-Whitehead theory (1969) on a fluid layer heated from
below with infinite aspect ratio, and the Stewartson-Stuart theory (1971) on
plane Poiseuille flow. In these theories, one works with partial differential equa-
tions throughout, not transforming them into ordinary differential equations. A
method was contrived to reduce the equations to a generalized form of the
Stuart-Landau equation, thereby admitting slow spatial and temporal modula-
tion of the envelope of the bifurcating flow patterns. We call that equation the
Ginzburg-Landau equation (named after a similar equation appearing in super-
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conductivity) or the Stewartson-Stuart equation. In this book we adopt the
former name.

Independently of the hydrodynamical context, the Ginzburg-Landau equa-
tion was derived by Graham and Haken (1968, 1970) in multimode lasers as a
further development of the Haken-Sauermann theory (1963); it should be noted
that fluctuations are included in most of their series of works. For various
non-equilibrium phase transitions described by the Ginzburg-Landau-type equa-
tion, see the review article by Haken (1975b) and his more recent monograph
(1983).

The derivation of the Ginzburg-Landau equation usually involves the method
of multiple scales (in space and time), and again there are some variants in
technical details. For convenience, we sometimes call all the related techniques
involving the use of stretched space-time coordinates the reductive perturbation
method, a term originally coined for a systematic method of deriving various
nonlinear wave equations mainly in dissipationless media (Taniuti and Wei,
1968; Taniuti, 1974). It is now widely known that the Ginzburg-Landau equation
is not only related to a few fluid mechanical or optical problems but that it can be
deduced from a rather general class of partial differential equations (Newell,
1974; Haken, 1975a; Gibbon and McGuiness, 1981; Lin and Kahn, 1982).
Chemical reactions with diffusion form a simple and particularly interesting class
of systems in this connection (Kuramoto and Tsuzuki, 1974; Wunderlin and
Haken, 1975), and we shall derive in Sect. 2.4 the Ginzburg-Landau equation for
general reaction-diffusion systems. Just as the Stuart-Landau equation describes
the simplest nonlinear oscillator, so the Ginzburg-Landau equation describes the
simplest field of nonlinear oscillators. In later chapters, this equation will be fre-
quently invoked in discussing chemical waves and chemical turbulence.

2.2 The Stuart-Landau Equation

In this section, we outline how a small-amplitude equation valid near the Hopf
bifurcation point is derived from the general system of ordinary differential
equations (2.1.1).

Let X and F be n-dimensional real vectors and y a real scalar parameter. Let
Xo(u) denote a steady solution of (2.1.1) or

F(Xou);u)=0.
We express (2.1.1) in terms of the deviation # = X — X, in a Taylor series:

d—u=Lu+Muu+Nuuu+..., (2.2.1)

dt

where L denotes the Jacobian matrix whose jjth element is given by
L= dF;(X,)/3Xy;; the abbreviations Muu and Nuuu, etc., indicate vectors
whose ith components are given by
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and the higher-order terms in ¥ may be expressed similarly. We shall later use
quantities like Muv and Nuvw for different vectors #, v and w, and their defini-
tions may be understood as an obvious extension of the above. Note, in par-
ticular, that Muv and Nuvw are symmetric functions of #, v and w. Note also
that the expansion coefficients, which are symbolically expressed by M, N, etc.,
generally depend on u at least through X, (u).

Suppose that y is varied in some range about u = 0. We assume that up to
u = 0 the solution X, remains stable to sufficiently small perturbations, while it
loses stability for 4 > 0. Consider the linear eigenvalue problem associated with
2.2.1), i.e.,

Lu=Au. 2.2.2)

The stability of X is related to the distribution of the eigenvalues A in the com-
plex plane. By assumption, this distribution changes with x in the following way:
all 4 stay in the left half-plane if u <0, and at least one eigenvalue crosses the
imaginary axis at 4 = 0. Since the eigenvalues are given by the zeros of an nth-
order polynomial with real coefficients, we have the following two general
possibilities: (a) one eigenvalue on the real axis crosses the origin (Fig. 2.1a),
(b) a pair of complex-conjugate eigenvalues cross the imaginary axis simul-
taneously (Fig. 2.1b). In each case, the eigenvalues are assumed to have nonzero
transversal “velocity” when crossing the imaginary axis, or

dRefA) |
d.u u=0
ImA ImA
o o
o o
Jh ReA Re A
o o
o o]
a) b)

Fig. 2.1a,b. Two typical distributions of the eigenvalues at criticality
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Furthermore, the rest of the eigenvalues are assumed to remain at a nonzero dis-
tance from the imaginary axis. In the following, we shall restrict our attention to
case (b), since this corresponds to the Hopf bifurcation.

Near criticality, the matrix L may be developed in powers of u:

L=Lo+uLi+p*Lo+... . 2.2.3)
To save notation, let A(u) denote a special eigenvalue which is becoming critical
rather than denoting a general one, and A(u) its complex conjugate (we use a bar
to signify a complex conjugate throughout). We assume a power-series expansion
for A also:

A= Ao+ pur+u ot ..., (2.2.4)
where A, are generally complex, or A, = g,+1iw,. By assumption,

go=0, 7;>0.

Let U denote the right eigenvector of L, corresponding to the eigenvalue
AO(=ia)0):

LOU= /10U, L()(_jz /T()U
Similarly, the left eigenvector is denoted by U*:
U*Lo= AU*, U*Lo= A,U*,

where U*U = U*U = 0, and these vectors are normalized as U*U = U*U = 1.
Note that Ao and A, are expressed as

/l(): ia)0= U*L()U, (225 a)

A1=G1+iCU1:U*L1U. (225b)

It is convenient to define a small positive parameter & by &2y = u, where
x = sgn u; € is considered to be a measure of the amplitude to lowest order, so
that one may assume the expansion

u=cu+euy+... . (2.2.6)
The expression in (2.2.3) now becomes

L=Lo+&xLi+e*Lo+... . (2.2.7)

Similarly, for some higher-order expansion coefficients in (2.2.1), we write
symbolically



