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Foreword

The GAMM Committee for Efficient Numerical Methods for Par-
tial Differential Equations (GAMM-FachausschuB "Effiziente
numerische Verfahren fiir partielle Differenzialgleichungen®)
organizes conferences and seminars on subjects concerning the
algorithmic treatment of partial differential eguation prob-

lems.

The first seminar "Efficient Solution of Elliptic Systems"
was followed by a second one held at the University of Kiel

from January 17th to January 19th, 1986. The title was

"Efficient Numerical Methods in Continuum Mechanics".

The equations arising in continuum mechanics have many con-
nections to those of fluid mechanics, but are usually more
complex. Therefore, much attention has to be paid to the ef-

ficient discretization, postprocessing and extrapolation.

The seminar was attended by 66 scientists from 10 countries.
Most of the 21 lectures presented at the seminar treated the
discretization of equations in continuum mechanics by finite
elements, methods for improving the accuracy of these approx-
imations and the use of boundary elements. Other contribu-
tions presented efficient methods for investigating bifurca-
tions which play an essential role in practical applications.
These proceedings contain 11 contributions in alphabetical

order.

The editors and organizers of the seminar would like to thank
the land Schleswig-Holstein and the DFG (Deutsche Forschungs-
gemeinschaft) for their support.

Kiel, November 1986 W. Hackbusch
K. Witsch
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OPTIMAL ERROR ESTIMATES AND ADAPTIVE TIME AND SPACE STEP
CONTROL FOR LINEAR PARABOLIC PROBLEMS

by

Kenneth Eriksson, Claes Johnson and Johan Lennblad
Chalmers University of Technology and the University

of Goteborg, Department of Mathematics
S-412 96 GOTEBORG, Sweden

0. Introduction

In this note we present recent developments in the pro-
gram for constructing adaptive algorithms for numerical met-
hods for parabolic type problems or stiff initial value pro-
lems that was initiated in Johnson [6] and was continued in
Eriksson, Johnson [3] and Johnson, Nie, Thomée [ 7].

Solutions of parabolic problems typically are nonsmooth
in initial transients but become smoother as time increases.
To minimize the work required to compute an approximate solu-
tion of a parabolic problem to a certain accuracy one there-
fore would like to use a numerical method which automatically
adapts the mesh size (in time and space) according to the
smoothness of the exact solution and auvtomatically chooses a
fine mesh in a transient and increases the mesh size as the
exact solution becomes smoother. Our objective is to construct
such adaptive algorithms that in particular satisfy the fol-

lowing criteria:

The error in the approximate solution is controlled (0.1)
globally in time to a given tolerance.

The algorithm is efficient in the sense that the {0.2)
mesh size is not chosen unnecessarily small.

The extra work required for the mesh control is small. (0.3)
The algorithm can be theoretically justified. (0.4)
No, or only very rough, a priori information of the {0.5)

exact solution is required.



To be able to satisfy (0.5), the necessary information con-
cerning the smoothness of the exact solution (of course) must
be obtained from the computed approximate solution as the
computation proceeds.

In [7] this program was carried out in detail in the
particular case of a backward Euler semi-discretization in
time ofalinear parabolic problem with error control in the
Lz—norm in space. We shall in this paper present extensions
of these results to a fully discrete linear parabolic problem
with now discretization also in space and with a higher order
(third order) accurate method for the time discretization.

The presented algorithm is easy to implement, satisfies (0.1)
- (0.5) and seems according to our numerical tests to perform
very satisfactory in practice. We believe that this type of
algorithm may be very useful in applications. Extensions to
non-linear parabolic problems will be presented in subsequent
work.

Our discretization method is obtained by using a standard
finite element method in space and the discontinuous Galerkin
method in time. We consider in this paper the case of a piece-
wise linear approximation in time resulting in a third order
accurate implicit Runge-Kutta type time-stepping scheme. Note
that the backward Euler method considered in [3] corresponds
to the discontinuous Galerkin method with piecewise constants.
Our adaptive method is based on an a posteriori error estimate
involving only the computed approximate solution. This estimate
is obtained through an optimal a priori error estimate invol-
ving the unknown exact solution together with a result showing
that under reasonable assumptions the quantities depending on
the exact solution may be estimated using the computed approxi-
mate solution. In this note the adaptivity in space is re-
stricted so that we only allow space meshes that become coarser
as time increases. As indicated this covers the standard situ-
ation where the exact solution becomes smoother with increasing
time. However, with given heat production terms or boundary
conditions varying rapidly in time, reverse situations may
occur. Such cases may be handled by the present technique

through restart but would otherwise require a (non-obvious)



extension of the argument.

We assume in this paper that the space discretization is
gquasi-uniform on each time level and thus the local element
size in space only depends on time. It is conceivable to
allow also a dependence on the space variable and thus work
with space meshes refined locally in space. The control of
such local refinements will however require local error esti-
mates the proof of which will involve additional technical
complications. A first step towards adaptive local refinements
for elliptic problems based on local error estimates was
taken in [5]. We hope to be able to extend this type of results
to parabolic problems in future work.

An outline of this note is as follows. In Section 1 we in-
troduce the fully discrete numerical method and state the op-
timal a priori error estimate. In Section 2 we formulate the
associated adaptive algorithm, and finally, in Section 3 we
present the results of some numerical experiments. For a proof
of the a priori error estimate, we refer to [4]. The proof of
the a posteriori error estimate, which is analogous to a cor-
responding proof in [ 7], will be given in a future publication.

For a more detailed comparison (as concerns the time dis-
cretization) of adaptive methods of the type considered in
this note with earlier methods presented in the literature
for numerical methods for stiff systems of ordinary differen-
tial equations, we refer to the discussion in [6]. Let us here
just remark that with the earlier approach to adaptivity for
stiff problems it seems as if one faces seriousdifficulties

with respect to all the conditions (0.1)-(0.4).

1. Discretization and a priori estimates

As a model problem we shall consider the following para-

bolic problem: Find u:(0,«) = H2(Q) n Hé(ﬂ) such that

ut - Au=f in @, t > O,
(1.1)
u(0) = ug in €,
where @ 1is a bounded domain in Rd with smooth boundary
I oy and f are given data and u, = %%. Here and below



H°(2) denotes for s > 0 the usual Sobolev space (of functions

with derivatives of order s square integrable over Q) with

norm | \S and corresponding semi-norm and

s
Hé(Q) = {v EHl(Q): v =0 on TI}. As is well-known, (1.1) may
be given the following variational formulation: Find

u: (0, =) - Hé(ﬂ) such that

(ut,v) + (Vu, W) = (f,v) Vv E Hé(Q), t >0 (1.2)
and u(0) = Ug, where Cops) denotes the LZ(Q)—inner product.
To discretize (1.2) let 0 = tO < tl S 4 tn <..., be a
subdivision of (0, =) into time intervals I_ = (tn—l’ tn]
of length k_ =t -t , andlet S cHy(2), n=1,2,...,

be finite dimensional spaces satisfying for some r > 2 and

constant E,

inf [lo=vll, < Ch "ol 3 = 0,1, voer" (q), (1.3)

wESn j
Here the Sn are typically finite element spaces based on con-

tinous piecewise polynomial functions of degree at most r - 1
on quasi-uniform triangulations of & with mesh size hn. For
a given non-negative integer q we introduce for n =1,2,...,
the finite dimensional space Vn consisting of functions on
In with values in Sn that vary as polynomials of degree at
most g in time:

q .
Vrl = {v:In > Sn: vit) = jjot]aj, aj € sn}.
We shall seek an approximate solution U in the space V de-
fined by

T € Vn’ n=212,c00nts
n

V = {v:(0,=) =~ Hl(Q)g v
0
To account for the fact that the functions in V may be dis-
continuous in time at the discrete time levels tn’ we introduce

the notation

v_ = lim v(t_ + s).
n S -)Ot n
We shall consider the following numerical method for (1.2):

Find U € V such that for n =1,2,..., U = U]I satisfies
n



+ - +
J UULv) + (Vvu,vv)tdat + (U 4 - Un—l’vn-l)

In

J (f,v)dt Vv €V, (1.4)
In

0, (1.4) reduces to the

where UB = uy. Note that with g

following method: For n = 1:;2;:5mu find Un = Url Sn such
that
(Un - Un_l,v)+kn(VUn,Vv) = (g f(t)dt,v) vv € Sn’ (1.5)
n

which is a variant of the well-known backward Euler method
where the average over In of the right hand side £ 1is used
instead of the usual value f(tn). Further, for g =1 we get

the following method %

n
(\vn,v) + kn(v¢n, v) + 2—(vwn,vv) + (¢n,V)

= (o__, +

ao1 * Yoopev) * (S f£at,v) (1.6)

I
n

k k
. n n
”n'W) + 5 (Vcbn,vw) + 3 (Wn,w)

where

If f = 0, then this method for the time discretization corre-
sponds to the subdiagonal Padé method of order 3, see [2].

In this paper we shall consider (1.4) with g = 1, that
is, the method (1.6). The a priori estimate on which the adapt-

ive algorithm for (1.6) is based reads as follows. We use the

notation

”V“S’I = max “V(t)“s' HV“I = HVHO,I , vl = ”V”O,

n t€r n n
n
and
t
L. = (log 5 4 132,
N kN



By C and Ci’ i=20,...,3, we denote positive constants
only depending on the parameter vy and the constant C in
(1.3).

Theorem 1. Let u be the solution of (1.1) and U that of

(1.4) with g = 1. Suppose that SnEf Sn-l for n=2,3,...,
and that for some constant y > 1 the time steps satisfy
ykn < tN - tn—l for 1 <n< N, N=1,2,... . Then we have
for N=1,2,... ,
- .
Hu—UHI < Ly maX(COnn!ulr,I + mln(ClanutHI ‘
N n n
2
C2knﬂutt\E )) . (1.7)
n
Theorem 2. Under the assumptions of Theorem 1 one has for
N = 14527033
Il _ - r
[lu () UNH < Ly max(COhn\bHr'I (1.8)
n<N n
+ min(C k_flaull, ,» C k2 aa |- ., okl s, - ))
1°n In’ 2°n t In’ 3™n tt‘In :

It follows that the method (1.4) with g =1 1is second
order accurate globally in time and third order accurate at
the discrete time levels tN. We also note that (1.7) is, dis-
regarding the logarithmic factor, optimal in the sense that
for some positive constant c

inf |lu-vll > ¢ max (hr[u{ + k2“

) .
VEV (O,tN) n<N n rely &

utt”In
Clearly also (1.8) is optimal in the sense that we cannot in-
crease the exponents of the factors hi and ki, neither can
we use weaker norms on u while keeping the exponents of hn
and kn. The adaptive algorithm to be introduced will be based

on (1.8). The optimality of (1.8) will guarantee that condition
(0.2) will be satisfied.

Remark 1.1. In ceneral the minimum on the right hand side of
(1.8) will be given by the third order tem C3kiHAuttHI ;
However, for the very few first steps instead the first"order

term Clkn|Mu[H may give the minimum. Note that in the case
n

f=z0 this term may be replaced by



e { [ug (s)llas,

n

which is useful on the first interval where u,  may be un-

bounded. o

Remark 1.2. DMNote that the only constant in (1.7) and (1.8)

depending on tN is the logarithmic constant L This means

N°
that it is possible to integrate over long time-intervals es-
sentially without accurulation of errors. This reflects the

parabolic nature of our problem. o

2. The adaptive algorithm

Supnose & > 0 1is a given tolerance and that we want the
error e = u-U in the approximate solution given by (1.4) with
g = 1 to satisfy

enﬂgc,n: 1025 6%s (2.1)

Relying on the a priori error estimate (1.8) we are then led to
try to choose the time steps kn and the space steps hn so
that for n = 1,2,...,

1A |

2
. . } \ ‘
Tt mln(Clkn_u\I ,CzknlfutlI i
n n n

r
|
anax(COhn u\r

: (2.2)
Slsa T yyed
C3}\n““utt“‘1n)) 5.

, Auﬁl , etc. are not
n

known in advance. However, it is possible to estimate these

O0f course, here the quantities ulr 1
r
n

quantities through the computed solution U and this leads to
the adaptive algorithm which we shall now describe. Let us
first introduce the discrete counterparts An: Hé(J)'*Sn of the

Laplace operator A defined as follows:

(_‘n('pl~): ('-'LD'T':)I V»esn- (2-3)
Let us now for simplicity assume that r = 2 and let us recall
that by elliptic regularity

| .
o], < C

ro |



if ¢ = 0 on T. This means that in (2.2) the quan-

tity \u‘le
r

may be replaced by C||AuHI . PReplacing now in
n
(2.2) A by An, u by U and time derivatives by simple difference

quotients, we are led to the following criterion for choosing

the local time and space steps:

2 . 2 3 $
anax(Cohndln’mln(Clkndln’CandZn’C3knd3n)) 5 (2.4)
where

a;, = lla o Il (2.5a)

AU = A N
a, = | &n—_n-lnly, n> 1, (2.5b)

k
n
_ 1 fnun ~n-1Yn-1 An—lUn—l_An-ZUn—2 2

d31’1_—“ - Hrn> r

n kn kn—l

(2 .5¢)

and where we set d21 = d31 = d32 = =, To determine h and

n
krl from (2.4) we would in principle have to (approximately)
solve nonlinear equations since the din depend on hrl and kn‘
In our implementation however we have simply used the predicted
values of hn and kn resulting from replacing in (2.4) the
din by the quantities di,n—l available if U has been com-

puted up to time tn—l’ We have also replaced the logarithmic

factor Ln by 1. Thus our algorithm for automatic choice of

space and time step in (1.4) with g = 1 1is as follows: For
n=1,2,..., choose
h, = (—2 /2 (2.6a)
2COdl,n—l

8 1/3

k =max (—2— , (—2 )12, — & 3
2Cdy a1 %Cxdg a1 293, m-1

(2.6Db)



If the predicted steps according to (2.6) and the corresponding
solution U; satisfy (2.4) the steps hrl and kn are accepted
and the computation proceeds, otherwise hn and kn are modi-

fied accordingly until (2.4) is met.

In our numerical tests with £ =0 and u|r =0 for t > 0, re-
quiring (2.4) to be satisfied up to a factor two, the predictions

(2.6) were always accepted.

The adaptive method for the backward Euler method (1.5) corre-
sponding to (2.4) reads:

§

2
anax(coh d Cikdi) ~ 3 (2.7)

n ln’ “1"n"1n
In [ 7] we proved under certain natural assumptions an a poster-
iori error estimate for the backward Euler method with discre-
tization only in time of essentially the following form:
lley Il< Ly max c;k d; - (2.8)
n<N
This estimate clearly justifies time step control for the back-
ward Euler method according to (2.7) and we see that if the com-
putational criterion (2.7) is satisfied, then by (2.8) the time
discretization error is controlled globally in time to the given
tolerance ¢&. Note that no previous result of this nature for
stiff initial value problems seems to be available in the litera-
ture.
Now, it is possible to prove under similar assumptions an a
posteriori error estimate for (1.4) with g = 1 corresponding
to (2.7), that is an a posteriori estimate of essentially the

form

2 . 2 3
max(COhndln-+mln(Clkndln,czknd2n,C3knd3n)).

lley Il< L
N n<N

N

(2.9)

By this estimate it follows that mesh control through (2.4) will
guarantee that the error is controlled globally to the tolerance
§. The detailed proof of (2.9), which is analogous to the proof

of (2.8) given in [7], will appear in a subsequent note.



Remark. Let {x1,..., XM} be a finite element basis for Sp

n n . .
= = 5 be the corresponding stiff-
and let An (aij) and B (Blj) e p g

ness and mass matrices with elements

n _ v )
aij = (inr Xj ’
n -_—

bij = (Xir)(j)-

we then have

M
A O = .Z nyiXyr ny € R,
i=1
where
n o= M A n= (n;) £= (€) o
= (] 1 i ’ S »q )
3. Numerical results

In this section we present the results of some numerical ex-
periments using the method (1.6) with mesh control according to

(2.6) in the case of the one-dimensional problem

e = Uy = 0, 0 <x <1, t>0,
u(o,t) = u(1,t) =0, t >0, (3.1)
u(x,0) = uo(x), 0 < x <1,

with initial functions ug of varying degree of smoothness.

The space meshes were restricted to be uniform subdivisions
-m

’

Qn = {J} of & = (0,1) into intervals J of length hn= 2

m € Z+ with

_ 1 . ; ; 1)
Sn = {v EHO(Q). vlJ is linear VJE€Q,’.

10



