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Probability and Computing

Randomization and probabilistic techniques play an important role in modern com-
puter science, with applications ranging from combinatorial optimization and machine
learning to communication networks and secure protocols.

This textbook is designed to accompany a one- or two-semester course for advanced
undergraduates or beginning graduate students in computer science and applied mathe-
matics. It gives an excellent introduction to the probabilistic techniques and paradigms
used in the development of probabilistic algorithms and analyses. It assumes only an
elementary background in discrete mathematics and gives a rigorous yet accessible
treatment of the material, with numerous examples and applications.

The first half of the book covers core material, including random sampling, expec-
tations, Markov’s inequality, Chebyshev’s inequality, Chernoff bounds, balls-and-bins
models, the probabilistic method, and Markov chains. In the second half, the authors
delve into more advanced topics such as continuous probability, applications of limited
independence, entropy, Markov chain Monte Carlo methods, coupling, martingales,
and balanced allocations. With its comprehensive selection of topics, along with many
examples and exercises, this book is an indispensable teaching tool.

Michael Mitzenmacher is John L. Loeb Associate Professor in Computer Science at
Harvard University. He received his Ph.D. from the University of California, Berke-
ley, in 1996. Prior to joining Harvard in 1999, he was a research staff member at Digital
Systems Research Laboratory in Palo Alto. He has received an NSF CAREER Award
and an Alfred P. Sloan Research Fellowship. In 2002, he shared the IEEE Information
Theory Society “Best Paper” Award for his work on error-correcting codes.

Eli Upfal is Professor and Chair of Computer Science at Brown University. He received
his Ph.D. from the Hebrew University, Jerusalem, Israel. Prior to joining Brown in
1997, he was a research staff member at the IBM research division and a professor at
the Weizmann Institute of Science in Israel. His main research interests are randomized
computation and probabilistic analysis of algorithms, with applications to optimization
algorithms, communication networks, parallel and distributed computing, and compu-
tational biology.
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Preface

Why Randomness?

Why should computer scientists study and use randomness? Computers appear to
behave far too unpredictably as it is! Adding randomness would seemingly be a dis-
advantage, adding further complications to the already challenging task of efficiently
utilizing computers.

Science has learned in the last century to accept randomness as an essential com-
ponent in modeling and analyzing nature. In physics, for example, Newton’s laws led
people to believe that the universe was a deterministic place; given a big enough calcu-
lator and the appropriate initial conditions, one could determine the location of planets
years from now. The development of quantum theory suggests a rather different view;
the universe still behaves according to laws, but the backbone of these laws is proba-
bilistic. “God does not play dice with the universe” was Einstein’s anecdotal objection
to modern quantum mechanics. Nevertheless, the prevailing theory today for subpar-
ticle physics is based on random behavior and statistical laws, and randomness plays a
significant role in almost every other field of science ranging from genetics and evolu-
tion in biology to modeling price fluctuations in a free-market economy.

Computer science is no exception. From the highly theoretical notion of proba-
bilistic theorem proving to the very practical design of PC Ethernet cards, randomness
and probabilistic methods play a key role in modern computer science. The last two
decades have witnessed a tremendous growth in the use of probability theory in com-
puting. Increasingly more advanced and sophisticated probabilistic techniques have
been developed for use within broader and more challenging computer science appli-
cations. In this book, we study the fundamental ways in which randomness comes
to bear on computer science: randomized algorithms and the probabilistic analysis of
algorithms.

Randomized algorithms: Randomized algorithms are algorithms that make random
choices during their execution. In practice, a randomized program would use values
generated by a random number generator to decide the next step at several branches
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PREFACE

of its execution. For example, the protocol implemented in an Ethernet card uses ran-
dom numbers to decide when it next tries to access the shared Ethernet communication
medium. The randomness is useful for breaking symmetry, preventing different cards
from repeatedly accessing the medium at the same time. Other commonly used ap-
plications of randomized algorithms include Monte Carlo simulations and primality
testing in cryptography. In these and many other important applications, randomized
algorithms are significantly more efficient than the best known deterministic solutions.
Furthermore, in most cases the randomized algorithms are also simpler and easier to
program.

These gains come at a price; the answer may have some probability of being incor-
rect, or the efficiency is guaranteed only with some probability. Although it may seem
unusual to design an algorithm that may be incorrect, if the probability of error is suf-
ficiently small then the improvement in speed or memory requirements may well be
worthwhile.

Probabilistic analysis of algorithms: Complexity theory tries to classify computa-
tion problems according to their computational complexity, in particular distinguish-
ing between easy and hard problems. For example, complexity theory shows that the
Traveling Salesmen problem is NP-hard. It is therefore very unlikely that there is an
algorithm that can solve any instance of the Traveling Salesmen problem in time that
is subexponential in the number of cities. An embarrassing phenomenon for the clas-
sical worst-case complexity theory is that the problems it classifies as hard to compute
are often easy to solve in practice. Probabilistic analysis gives a theoretical explanation
for this phenomenon. Although these problems may be hard to solve on some set of
pathological inputs, on most inputs (in particular, those that occur in real-life applica-
tions) the problem is actually easy to solve. More precisely, if we think of the input as
being randomly selected according to some probability distribution on the collection of
all possible inputs, we are very likely to obtain a problem instance that is easy to solve,
and instances that are hard to solve appear with relatively small probability. Probabilis-
tic analysis of algorithms is the method of studying how algorithms perform when the
input is taken from a well-defined probabilistic space. As we will see, even NP-hard
problems might have algorithms that are extremely efficient on almost all inputs.

The Book

This textbook is designed to accompany one- or two-semester courses for advanced
undergraduate or beginning graduate students in computer science and applied math-
ematics. The study of randomized and probabilistic techniques in most leading uni-
versities has moved from being the subject of an advanced graduate seminar meant
for theoreticians to being a regular course geared generally to advanced undergraduate
and beginning graduate students. There are a number of excellent advanced, research-
oriented books on this subject, but there is a clear need for an introductory textbook.
We hope that our book satisfies this need.

The textbook has developed from courses on probabilistic methods in computer sci-
ence taught at Brown (CS 155) and Harvard (CS 223) in recent years. The emphasis
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PREFACE

in these courses and in this textbook is on the probabilistic techniques and paradigms,
not on particular applications. Each chapter of the book is devoted to one such method
or technique. Techniques are clarified though examples based on analyzing random-
ized algorithms or developing probabilistic analysis of algorithms on random inputs.
Many of these examples are derived from problems in networking, reflecting a promi-
nent trend in the networking field (and the taste of the authors).

The book contains fourteen chapters. We may view the book as being divided into
two parts, where the first part (Chapters 1-7) comprises what we believe is core mate-
rial. The book assumes only a basic familiarity with probability theory, equivalent to
what is covered in a standard course on discrete mathematics for computer scientists.
Chapters 1-3 review this elementary probability theory while introducing some inter-
esting applications. Topics covered include random sampling, expectation, Markov’s
inequality, variance, and Chebyshev’s inequality. If the class has sufficient background
in probability, then these chapters can be taught quickly. We do not suggest skipping
them, however, because they introduce the concepts of randomized algorithms and
probabilistic analysis of algorithms and also contain several examples that are used
throughout the text.

Chapters 4-7 cover more advanced topics, including Chernoff bounds, balls-and-
bins models, the probabilistic method, and Markov chains. The material in these chap-
ters is more challenging than in the initial chapters. Sections that are particularly chal-
lenging (and hence that the instructor may want to consider skipping) are marked with
an asterisk. The core material in the first seven chapters may constitute the bulk of a
quarter- or semester-long course, depending on the pace.

The second part of the book (Chapters 8-14) covers additional advanced material
that can be used either to fill out the basic course as necessary or for a more advanced
second course. These chapters are largely self-contained, so the instructor can choose
the topics best suited to the class. The chapters on continuous probability and en-
tropy are perhaps the most appropriate for incorporating into the basic course. Our
introduction to continuous probability (Chapter 8) focuses on uniform and exponential
distributions, including examples from queueing theory. Our examination of entropy
(Chapter 9) shows how randomness can be measured and how entropy arises naturally
in the context of randomness extraction, compression, and coding.

Chapters 10 and 11 cover the Monte Carlo method and coupling, respectively; these
chapters are closely related and are best taught together. Chapter 12, on martingales,
covers important issues on dealing with dependent random variables, a theme that con-
tinues in a different vein in Chapter 13’s development of pairwise independence and
derandomization. Finally, the chapter on balanced allocations (Chapter 14) covers a
topic close to the authors’ hearts and ties in nicely with Chapter 5’s analysis of balls-
and-bins problems.

The order of the subjects, especially in the first part of the book, corresponds to
their relative importance in the algorithmic literature. Thus, for example, the study
of Chernoff bounds precedes more fundamental probability concepts such as Markov
chains. However, instructors may choose to teach the chapters in a different order. A
course with more emphasis on general stochastic processes, for example, may teach
Markov chains (Chapter 7) immediately after Chapters 1-3, following with the chapter
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PREFACE

on balls, bins, and random graphs (Chapter 5, omitting the Hamiltonian cycle exam-
ple). Chapter 6 on the probabilistic method could then be skipped, following instead
with continuous probability and the Poisson process (Chapter 8). The material from
Chapter 4 on Chernoff bounds, however, is needed for most of the remaining material.

Most of the exercises in the book are theoretical, but we have included some program-
ming exercises — including two more extensive exploratory assignments that require
some programming. We have found that occasional programming exercises are often
helpful in reinforcing the book’s ideas and in adding some variety to the course.

We have decided to restrict the material in this book to methods and techniques based
on rigorous mathematical analysis; with few exceptions, all claims in this book are fol-
lowed by full proofs. Obviously, many extremely useful probabilistic methods do not
fall within this strict category. For example, in the important area of Monte Carlo meth-
ods, most practical solutions are heuristics that have been demonstrated to be effective
and efficient by experimental evaluation rather than by rigorous mathematical analy-
sis. We have taken the view that, in order to best apply and understand the strengths
and weaknesses of heuristic methods, a firm grasp of underlying probability theory and
rigorous techniques — as we present in this book — is necessary. We hope that students
will appreciate this point of view by the end of the course.
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CHAPTER ONE

Events and Probability

This chapter introduces the notion of randomized algorithms and reviews some basic
concepts of probability theory in the context of analyzing the performance of simple
randomized algorithms for verifying algebraic identities and finding a minimum cut-set
in a graph.

1.1. Application: Verifying Polynomial Identities

Computers can sometimes makes mistakes, due for example to incorrect programming
or hardware failure. It would be useful to have simple ways to double-check the results
of computations. For some problems, we can use randomness to efficiently verify the
correctness of an output.

Suppose we have a program that multiplies together monomials. Consider the prob-
lem of verifying the following identity, which might be output by our program:

(x+Dx=2)(x+3)(x =4 (x+5)(x —6) = x® — x4 25.

There is an easy way to verify whether the identity is correct: multiply together the
terms on the left-hand side and see if the resulting polynomial matches the right-hand
side. In this example, when we multiply all the constant terms on the left, the result
does not match the constant term on the right, so the identity cannot be valid. More
generally, given two polynomials F(x) and G(x), we can verify the identity

F(x) = G(x)

by converting the two polynomials to their canonical forms (Y"¢_ ¢, x* ); two polyno-
mials are equivalent if and only if all the coefficients in their canonical forms are equal.
From this point on let us assume that, as in our example, F(x) is given as a product
F(x) = ]—[?:](x —a;) and G(x) is given in its canonical form. Transforming F(x) to
its canonical form by consecutively multiplying the ith monomial with the product of
the first i — 1 monomials requires ®(d?) multiplications of coefficients. We assume in

1



EVENTS AND PROBABILITY

what follows that each multiplication can be performed in constant time, although if
the products of the coefficients grow large then it could conceivably require more than
constant time to add and multiply numbers together.

So far, we have not said anything particularly interesting. To check whether the
computer program has multiplied monomials together correctly, we have suggested
multiplying the monomials together again to check the result. Our approach for check-
ing the program is to write another program that does essentially the same thing we
expect the first program to do. This is certainly one way to double-check a program:
write a second program that does the same thing, and make sure they agree. There
are at least two problems with this approach, both stemming from the idea that there
should be a difference between checking a given answer and recomputing it. First, if
there is a bug in the program that multiplies monomials, the same bug may occur in the
checking program. (Suppose that the checking program was written by the same per-
son who wrote the original program!) Second, it stands to reason that we would like
to check the answer in less time than it takes to try to solve the original problem all
over again.

Let us instead utilize randomness to obtain a faster method to verify the identity. We
informally explain the algorithm and then set up the formal mathematical framework
for analyzing the algorithm.

Assume that the maximum degree, or the largest exponent of x, in F(x) and G(x) is
d. The algorithm chooses an integer r uniformly at random in the range {1, ...,100d},
where by “uniformly at random” we mean that all integers are equally likely to be
chosen. The algorithm then computes the values F(r) and G(r). If F(r) # G(r) the
algorithm decides that the two polynomials are not equivalent, and if F(r) = G(r) the
algorithm decides that the two polynomials are equivalent.

Suppose that in one computation step the algorithm can generate an integer cho-
sen uniformly at random in the range {1, ...,100d}. Computing the values of F(r) and
G (r) can be done in O(d) time, which is faster than computing the canonical form of
F(r). The randomized algorithm, however, may give a wrong answer.

How can the algorithm give the wrong answer?

If F(x) = G(x), then the algorithm gives the correct answer, since it will find that
F(r) = G(r) for any value of r.

If F(x) # G(x) and F(r) # G(r), then the algorithm gives the correct answer since
it has found a case where F(x) and G (x) disagree. Thus, when the algorithm decides
that the two polynomials are not the same, the answer is always correct.

If F(x) # G(x) and F(r) = G(r), the algorithm gives the wrong answer. In
other words, it is possible that the algorithm decides that the two polynomials are the
same when they are not. For this error to occur, » must be a root of the equation
F(x) — G(x) = 0. The degree of the polynomial F(x) — G(x) is no larger than d
and, by the fundamental theorem of algebra, a polynomial of degree up to d has no
more than d roots. Thus, if F(x) # G(x), then there are no more than d values in the
range {1, ...,100d} for which F(r) = G(r). Since there are 100d values in the range
{1,...,100d}, the chance that the algorithm chooses such a value and returns a wrong
answer is no more than 1/100.



1.2 AXIOMS OF PROBABILITY

1.2. Axioms of Probability

We turn now to a formal mathematical setting for analyzing the randomized algorithm.
Any probabilistic statement must refer to the underlying probability space.

Definition 1.1: A probability space has three components:

1. a sample space 2, which is the set of all possible outcomes of the random process
modeled by the probability space;

2. afamily of sets F representing the allowable events, where each set in F is a subset
of the sample space 2; and

3. a probability function Pr: F — R satisfying Definition 1.2.

An element of 2 is called a simple or elementary event.

In the randomized algorithm for verifying polynomial identities, the sample space
is the set of integers (1, ...,100d}. Each choice of an integer r in this range is a simple
event.

Definition 1.2: A probability function is any function Pr: F — R that satisfies the
following conditions:

1. for any event E,0 < Pr(E) < I,
2. Pr(Q2) =1; and
3. for any finite or countably infinite sequence of pairwise mutually disjoint events

E\,Ey, Es, ...,
Pr(U E,») = ZPr(E,).

i>1 i>1

In most of this book we will use discrete probability spaces. In a discrete probability
space the sample space 2 is finite or countably infinite, and the family F of allow-
able events consists of all subsets of Q2. In a discrete probability space, the probability
function is uniquely defined by the probabilities of the simple events.

Again, in the randomized algorithm for verifying polynomial identities, each choice
of an integer r is a simple event. Since the algorithm chooses the integer uniformly at
random, all simple events have equal probability. The sample space has 100d simple
events, and the sum of the probabilities of all simple events must be 1. Therefore each
simple event has probability 1/100d.

Because events are sets, we use standard set theory notation to express combinations
of events. We write E| N E, for the occurrence of both E; and E, and write E; U E,
for the occurrence of either E; or E, (or both). For example, suppose we roll two dice.
If E, is the event that the first die is a 1 and E, is the event that the second die is a 1,
then E1 N E; denotes the event that both dice are 1 while E, U E, denotes the event that
at least one of the two dice lands on 1. Similarly, we write E; — E, for the occurrence
of an event that is in E;| but not in E,. With the same dice example, E; — E, consists
of the event where the first die is a 1 and the second die is not. We use the notation E



