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Preface

A precise description of a programming language is a prerequisite for its implementation
and for its use. The description can take many forms, each suited to a different purpose. A
common form is a reference manual, which is usually a careful narrative description of the
meaning of each construction in the language, often backed up with a formal presentation
of the grammar (for example, in Backus-Naur form). This gives the programmer enough
understanding for many of his purposes. But it is ill-suited for use by an implementer, or
by someone who wants to formulate laws for equivalence of programs, or by a programmer
who wants to design programs with mathematical rigour.

This document is a formal description of both the grammar and the meaning of a
language which is both designed for large projects and widely used. As such, it aims
to serve the whole community of people seriously concerned with the language. At a
time when it is increasingly understood that programs must withstand rigorous analysis,
particularly for systems where safety is critical, a rigorous language presentation is even
important for negotiators and contractors; for a robust program written in an insecure
language is like a house built upon sand.

Most people have not looked at a rigorous language presentation before. To help them
particularly, but also to put the present work in perspective for those more theoretically
prepared, it will be useful here to say something about three things: the nature of Standard
ML, the task of language definition in general, and the form of the present Definition. We
also briefly describe the recent revisions to the Definition.

Standard ML

Standard ML is a functional programming language, in the sense that the full power of
mathematical functions is present. But it grew in response to a particular programming
task, for which it was equipped also with full imperative power, and a sophisticated
exception mechanism. It has an advanced form of parametric modules, aimed at organised
development of large programs. Finally it is strongly typed, and it was the first language to
provide a particular form of polymorphic type which makes the strong typing remarkably
flexible. This combination of ingredients has not made it unduly large, but their novelty
has been a fascinating challenge to semantic method (of which we say more below).

ML has evolved over twenty years as a fusion of many ideas from many people. This
evolution is described in some detail in Appendix F of the book, where also we acknowledge
all those who have contributed to it, both in design and in implementation.

‘ML’ stands for meta language; this is the term logicians use for a language in which
other (formal or informal) languages are discussed and analysed. Originally ML was con-
ceived as a medium for finding and performing proofs in a logical language. Conducting
rigorous argument as dialogue between person and machine has been a growing research
topic throughout these twenty years. The difficulties are enormous, and make stern de-
mands upon the programming language which is used for this dialogue. Those who are
not familiar with computer-assisted reasoning may be surprised that a programming lan-
guage, which was designed for this rather esoteric activity, should ever lay claim to being



generally useful. On reflection, they should not be surprised. LISP is a prime example of
a language invented for esoteric purposes and becoming widely used. LISP was invented
for use in artificial intelligence (AI); the important thing about AI here is not that it is
esoteric, but that it is difficult and varied; so much so, that anything which works well
for it must work well for many other applications too.

The same can be said about the initial purpose of ML, but with a different emphasis.
Rigorous proofs are complex things, which need varied and sophisticated presentation
— particularly on the screen in interactive mode. Furthermore the proof methods, or
strategies, involved are some of the most complex algorithms which we know. This all
applies equally to Al, but one demand is made more strongly by proof than perhaps by
any other application: the demand for rigour.

This demand established the character of ML. In order to be sure that, when the user
and the computer claim to have together performed a rigorous argument, their claim is
justified, it was seen that the language must be strongly typed. On the other hand, to be
useful in a difficult application, the type system had to be rather flexible, and permit the
machine to guide the user rather than impose a burden upon him. A reasonable solution
was found, in which the machine helps the user significantly by inferring his types for him.
Thereby the machine also confers complete reliability on his programs, in this sense: If
a program claims that a certain result follows from the rules of reasoning which the user
has supplied, then the claim may be fully trusted.

The principle of inferring useful structural information about programs is also rep-
resented, at the level of program modules, by the inference of signatures. Signatures
describe the interfaces between modules, and are vital for robust large-scale programs.
When the user combines modules, the signature discipline prevents him from mismatch-
ing their interfaces. By programming with interfaces and parametric modules, it becomes
possible to focus on the structure of a large system, and to compile parts of it in isolation
from one another — even when the system is incomplete.

This emphasis on types and signatures has had a profound effect on the language
Definition. Over half this document is devoted to inferring types and signatures for
programs. But the method used is exactly the same as for inferring what values a program
delivers; indeed, a type or signature is the result of a kind of abstract evaluation of a
program phrase.

In designing ML, the interplay among three activities — language design, definition and
implementation — was extremely close. This was particularly true for the newest part, the
parametric modules. This part of the language grew from an initial proposal by David
MacQueen, itself highly developed; but both formal definition and implementation had
a strong influence on the detailed design. In general, those who took part in the three
activities cannot now imagine how they could have been properly done separately.

Language Definition

Every programming language presents its own conceptual view of computation. This view
is usually indicated by the names used for the phrase classes of the language, or by its
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keywords: terms like package, module, structure, exception, channel, type, procedure,
reference, sharing, .... These terms also have their abstract counterparts, which may
be called semantic objects; these are what people really have in mind when they use the
language, or discuss it, or think in it. Also, it is these objects, not the syntax, which
represent the particular conceptual view of each language; they are the character of the
language. Therefore a definition of the language must be in terms of these objects.

As is commonly done in programming language semantics, we shall loosely talk of
these semantic objects as meanings. Of course, it is perfectly possible to understand
the semantic theory of a language, and yet be unable to understand the meaning of
a particular program, in the sense of its intention or purpose. The aim of a language
definition is not to formalise everything which could possibly be called the meaning of a
program, but to establish a theory of semantic objects upon which the understanding of
particular programs may rest.

The job of a language-definer is twofold. First — as we have already suggested — he
must create a world of meanings appropriate for the language, and must find a way of
saying what these meanings precisely are. Here, he meets a problem; notation of some
kind must be used to denote and describe these meanings — but not a programming
language notation, unless he is passing the buck and defining one programming language
in terms of another. Given a concern for rigour, mathematical notation is an obvious
choice. Moreover, it is not enough just to write down mathematical definitions. The
world of meanings only becomes meaningful if the objects possess nice properties, which
make them tractable. So the language-definer really has to develop a small theory of
his meanings, in the same way that a mathematician develops a theory. Typically, after
initially defining some objects, the mathematician goes on to verify properties which
indicate that they are objects worth studying. It is this part, a kind of scene-setting,
which the language-definer shares with the mathematician. Of course he can take many
objects and their theories directly from mathematics, such as functions, relations, trees,
sequences, . ... But he must also give some special theory for the objects which make his
language particular, as we do for types, structures and signatures in this book; otherwise
his language definition may be formal but will give no insight.

The second part of the definer’s job is to define evaluation precisely. This means that
he must define at least what meaning, M, results from evaluating any phrase P of his
language (though he need not explain exactly how the meaning results; that is he need
not give the full detail of every computation). This part of his job must be formal to
some extent, if only because the phrases P of his language are indeed formal objects.
But there is another reason for formality. The task is complex and error-prone, and
therefore demands a high level of explicit organisation (which is, largely, the meaning
of ‘formality’); moreover, it will be used to specify an equally complex, error-prone and
formal construction: an implementation.

We shall now explain the keystone of our semantic method. First, we need a slight but
important refinement. A phrase P is never evaluated in vacuo to a meaning M, but always
against a background; this background — call it B — is itself a semantic object, being a
distillation of the meanings preserved from evaluation of earlier phrases (typically variable
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declarations, procedure declarations, etc.). In fact evaluation is background-dependent —
M depends upon B as well as upon P.
The keystone of the method, then, is a certain kind of assertion about evaluation; it
takes the form
BFP=>M

and may be pronounced: ‘Against the background B, the phrase P evaluates to the
meaning M’. The formal purpose of this Definition is no more, and no less, than to
decree exactly which assertions of this form are true. This could be achieved in many
ways. We have chosen to do it in a structured way, as others have, by giving rules which
allow assertions about a compound phrase P to be inferred from assertions about its
constituent phrases P, ..., P,.

We have written the Definition in a form suggested by the previous remarks. That
is, we have defined our semantic objects in mathematical notation which is completely
independent of Standard ML, and we have developed just enough of their theory to give
sense to our rules of evaluation.

Following another suggestion above, we have factored our task by describing abstract
evaluation — the inference and checking of types and signatures (which can be done at
compile-time) — completely separately from concrete evaluation. It really is a factorisation,
because a full value in all its glory — you can think of it as a concrete object with a type
attached — never has to be presented.

The Revision of Standard ML

The Definition of Standard ML was published in 1990. Since then the implementation
technology of the language has advanced enormously, and its users have multiplied. The
language and its Definition have therefore incited close scrutiny, evaluation, much ap-
proval, sometimes strong criticism.

The originators of the language have sifted this response, and found that there are
inadequacies in the original language and its formal Definition. They are of three kinds:
missing features which many users want; complex and little-used features which most users
can do without; and mistakes of definition. What is remarkable is that these inadequacies
are rather few, and that they are rather uncontroversial.

This new version of the Definition addresses the three kinds of inadequacy respectively
by additions, subtractions and corrections. But we have only made such amendments
when one or more aspects of SML — the language itself, its usage, its implementation, its
formal Definition — have thus become simpler, without complicating the other aspects. It
is worth noting that even the additions meet this criterion; for example we have introduced
type abbreviations in signatures to simplify the use of the language, but the way we have
done it has even simplified the Definition too. In fact, after our changes the formal
Definition has fewer rules.

In this exercise we have consulted the major implementers and several users, and have
found broad agreement. In the 1990 Definition it was predicted that further versions of
the Definition would be produced as the language develops, with the intention to minimise
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the number of versions. This is the first revised version, and we foresee no others. The
changes that have been made to the 1990 Definition are enumerated in Appendix G.

The resulting document is, we hope, valuable as the essential point of reference for
Standard ML. If it is to play this role well, it must be supplemented by other literature.
Many expository books have already been written, and this Definition will be useful as
a background reference for their readers. We became convinced, while writing the 1990
Definition, that we could not discuss many questions without making it far too long. Such
questions are: Why were certain design choices made? What are their implications for
programming? Was there a good alternative meaning for some constructs, or was our
hand forced? What different forms of phrase are equivalent? What is the proof of certain
claims? Many of these questions are not answered by pedagogic texts either. We therefore
wrote a Commentary on the 1990 Definition to assist people in reading it, and to serve as
a bridge between the Definition and other texts. Though in part outdated by the present
revision, the Commentary still largely fulfils its purpose.

There exist several textbooks on programming with Standard ML[45,44,56,50]. The
second edition of Paulson’s book[45] conforms with the present revision.

We wish to thank Dave Berry, Lars Birkedal, Martin Elsman, Stefan Kahrs and John
Reppy for many detailed comments and suggestions which have assisted the revision.

Robin Milner Mads Tofte Robert Harper David MacQueen

November 1996
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1 Introduction

This document formally defines Standard ML.

To understand the method of definition, at least in broad terms, it helps to consider
how an implementation of ML is naturally organised. ML is an interactive language, and a
program consists of a sequence of top-level declarations; the execution of each declaration
modifies the top-level environment, which we call a basis, and reports the modification to
the user.

In the execution of a declaration there are three phases: parsing, elaboration, and
evaluation. Parsing determines the grammatical form of a declaration. Elaboration, the
static phase, determines whether it is well-typed and well-formed in other ways, and
records relevant type or form information in the basis. Finally evaluation, the dynamic
phase, determines the value of the declaration and records relevant value information
in the basis. Corresponding to these phases, our formal definition divides into three
parts: grammatical rules, elaboration rules, and evaluation rules. Furthermore, the basis
is divided into the static basis and the dynamic basis; for example, a variable which has
been declared is associated with a type in the static basis and with a value in the dynamic
basis.

In an implementation, the basis need not be so divided. But for the purpose of
formal definition, it eases presentation and understanding to keep the static and dynamic
parts of the basis separate. This is further justified by programming experience. A large
proportion of errors in ML programs are discovered during elaboration, and identified as
errors of type or form, so it follows that it is useful to perform the elaboration phase
separately. In fact, elaboration without evaluation is part of what is normally called
compilation; once a declaration (or larger entity) is compiled one wishes to evaluate it —
repeatedly — without re-elaboration, from which it follows that it is useful to perform the
evaluation phase separately.

A further factoring of the formal definition is possible, because of the structure of the
language. ML consists of a lower level called the Core language (or Core for short), a
middle level concerned with programming-in-the-large called Modules, and a very small
upper level called Programs. With the three phases described above, there is therefore
a possibility of nine components in the complete language definition. We have allotted
one section to each of these components, except that we have combined the parsing,
elaboration and evaluation of Programs in one section. The scheme for the ensuing seven
sections is therefore as follows:

Core Modules  Programs

Syntaz | Section 2 | Section 3

Static Semantics | Section 4 | Section 5 | Section 8
Dynamic Semantics | Section 6 | Section 7

The Core provides many phrase classes, for programming convenience. But about
half of these classes are derived forms, whose meaning can be given by translation into
the other half which we call the Bare language. Thus each of the three parts for the
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Core treats only the bare language; the derived forms are treated in Appendix A. This
appendix also contains a few derived forms for Modules. A full grammar for the language
is presented in Appendix B.

In Appendices C and D the initial basis is detailed. This basis, divided into its static
and dynamic parts, contains the static and dynamic meanings of a small set of predefined
identifiers. A richer basis is defined in a separate document[18].

The semantics is presented in a form known as Natural Semantics. It consists of a set
of rules allowing sentences of the form

A& phrase = A’

to be inferred, where A is often a basis (static or dynamic) and A’ a semantic object —
often a type in the static semantics and a value in the dynamic semantics. One should read
such a sentence as follows: “against the background provided by A, the phrase phrase
elaborates — or evaluates — to the object A””. Although the rules themselves are formal the
semantic objects, particularly the static ones, are the subject of a mathematical theory
which is presented in a succinct form in the relevant sections.

The robustness of the semantics depends upon theorems. Usually these have been
proven, but the proof is not included.



2 Syntax of the Core
2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except =) be
used as identifiers.

abstype and andalso as case datatype do else
end exception fn fun handle if in  infix
infixr let local nonfix of op open orelse
raise rec then type val with withtype while
)Y [ 1 €¥ 5 = ;5 s = > >

2.2 Special constants

An integer constant (in decimal notation) is an optional negation symbol (~) followed
by a non-empty sequence of decimal digits 0,..,9. An integer constant (in hexadecimal
notation) is an optional negation symbol followed by 0x followed by a non-empty sequence
of hexadecimal digits 0,..,9 and a,..,f. (4,..,F may be used as alternatives for a,. ., f.)

A word constant (in decimal notation) is Ow followed by a non-empty sequence of
decimal digits. A word constant (in hexadecimal notation) is Owx followed by a non-empty
sequence of hexadecimal digits. A real constant is an integer constant in decimal notation,
possibly followed by a point (.) and one or more decimal digits, possibly followed by an
exponent symbol (E or e) and an integer constant in decimal notation; at least one of
the optional parts must occur, hence no integer constant is a real constant. Examples:
0.7 3.32E5 3E"7 . Non-examples: 23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of N characters (N > 256), numbered 0 to N —1,
which agrees with the ASCII character set on the characters numbered 0 to 127. The
interval [0, N — 1] is called the ordinal range of the alphabet. A string constant is a
sequence, between quotes ("), of zero or more printable characters (i.e., numbered 33—
126), spaces or escape sequences. Each escape sequence starts with the escape character
\ , and stands for a character sequence. The escape sequences are:

\a A single character interpreted by the system as alert (ASCII 7)

\b Backspace (ASCII 8)

\t Horizontal tab (ASCII 9)

\n Linefeed, also known as newline (ASCII 10)

\v Vertical tab (ASCII 11)

\f Form feed (ASCII 12)

\r Carriage return (ASCII 13)

\"c The control character ¢, where ¢ may be any character with number

64-95. The number of \"c is 64 less than the number of c.
\ddd The single character with number ddd (3 decimal digits denoting
an integer in the ordinal range of the alphabet).
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\uzzzz The single character with number zzzz (4 hexadecimal digits de-
noting an integer in the ordinal range of the alphabet).

\II n

\\ \

\f--f\  This sequence is ignored, where f - -f stands for a sequence of one
or more formatting characters.

The formatting characters are a subset of the non-printable characters including at
least space, tab, newline, formfeed. The last form allows long strings to be written on
more than one line, by writing \ at the end of one line and at the start of the next.

A character constant is a sequence of the form #s, where s is a string constant denoting
a string of size one character.

Libraries may provide multiple numeric types and multiple string types. To each
string type corresponds an alphabet with ordinal range [0, N — 1] for some N > 256;
each alphabet must agree with the ASCII character set on the characters numbered 0 to
127. When multiple alphabets are supported, all characters of a given string constant are
interpreted over the same alphabet. For each special constant, overloading resolution is
used for determining the type of the constant (see Appendix E).

We denote by SCon the class of special constants, i.e., the integer, real, word, character
and string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (* *) in which comment
brackets are properly nested. No space is allowed between the two characters which make
up a comment bracket (* or *). An unmatched (* should be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use vid, tyvar to
range over VId, TyVar etc. For each class X marked “long” there is a class longX of
long identifiers; if z ranges over X then longz ranges over longX. The syntax of these long
identifiers is given by the following:

longz = =z identifier
stridy.---.strid,.z qualified identifier (n > 1)

VId (value identifiers ) long
TyVar (type variables )

TyCon (type constructors ) long
Lab (record labels )

Strld  (structure identifiers ) long

Figure 1: Identifiers
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The qualified identifiers constitute a link between the Core and the Modules. Through-
out this document, the term “identifier”, occurring without an adjective, refers to non-
qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes (°) and
underbars (-) starting with a letter or prime, or symbolic: any non-empty sequence of the
following symbols

' % & 8 + -/ < = > 17 @\ " "~ | =*

In either case, however, reserved words are excluded. This means that for example # and
| are not identifiers, but ## and |=| are identifiers. The only exception to this rule
is that the symbol =, which is a reserved word, is also allowed as an identifier to stand
for the equality predicate. The identifier = may not be re-bound; this precludes any
syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a prime; the
subclass EtyVar of TyVar, the equality type variables, consists of those which start with
two or more primes. The classes VId, TyCon and Lab are represented by identifiers
not starting with a prime. However, * is excluded from TyCon, to avoid confusion with
the derived form of tuple type (see Figure 23). The class Lab is extended to include the
numeric labels 1 2 3 .-+, i.e. any numeral not starting with 0. The identifier class Strld
is represented by alphanumeric identifiers not starting with a prime.

TyVar is therefore disjoint from the other four classes. Otherwise, the syntax class
of an occurrence of identifier id in a Core phrase (ignoring derived forms, Section 2.7) is
determined thus:

1. Immediately before “.” — i.e. in a long identifier — or in an open declaration, id is

a structure identifier. The following rules assume that all occurrences of structure
identifiers have been removed.

2. At the start of a component in a record type, record pattern or record expression,
id is a record label.

3. Elsewhere in types id is a type constructor.
4. Elsewhere, id is a value identifier.

By means of the above rules a compiler can determine the class to which each identifier
occurrence belongs; for the remainder of this document we shall therefore assume that
the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a special constant
or a long identifier. Comments and formatting characters separate items (except within
string constants; see Section 2.2) and are otherwise ignored. At each stage the longest
next item is taken.



