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Preface

Over the period 2000-2006 the Deutsche Forschungsgemeinschaft sponsored
a special Schwerpunkt programme, entitled “Global Methods in Complex Ge-
ometry”.

The articles of this volume grew out of this programme and document

some of the scientific activity performed in the realm of the Schwerpunkt.
They also aim at giving a broader overview of recent developments in various
directions of Complex Geometry such as

Low-dimensional geometry: surfaces of general type, Fano threefolds,
Calabi-Yau threefolds;

moduli spaces and families of varieties over curves;

Hodge theory, motivic cohomology and characteristic p-geometry;
moment maps and group actions on flag manifolds;

geometry of singular varieties: vector fields, equisingular families and vec-
tor bundles;

geometry of rational curves and pseudo-effective line bundles.

The articles are devoted to a broad spectrum of topics, which range from
purely algebraic to complex-analytic aspects of our subject.

The participants of the Schwerpunkt would like to thank the Deutsche

Forschungsgemeinschaft for its generous support.

Bayreuth, Essen, Bochum, Hannover, June 2006

Fabrizio Catanese, Héléne Esnault, Alan Huckleberry, Klaus Hulek,
Thomas Peternell
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Introduction

In this article we shall give an overview of some recent developments in the
theory of complex algebraic surfaces of general type.

After the rough or Enriques-Kodaira classification of complex (algebraic)
surfaces, dividing compact complex surfaces in four classes according to their
Kodaira dimension —oo, 0, 1, 2, the first three classes nowadays are quite well
understood, whereas even after decades of very active research on the third
class, the class of surfaces of general type, there is still a huge number of very
hard questions left open. Of course, we made some selection, which is based
on the research interest of the authors and we claim in no way completeness of
our treatment. We apologize in advance for omitting various very interesting
and active areas in the theory of surfaces of general type as well as for not
being able to mention all the results and developments which are important
in the topics we have chosen.

Complex surfaces of general type come up with certain (topological, bi-
rational) invariants, topological as for example the topological Euler number
e and the self intersection number of the canonical divisor K2 of a minimal
surface, which are linked by several (in-) equalities. In the first chapter we
will summarize the classically known inequalities, which force surfaces of gen-
eral type in a certain region of the plane having K2 and e as coordinates,
and we shall briefly comment on the so-called geography problem, whether,

* The present work was performed in the realm of the SCHWERPUNKT “Globale
Methoden in der komplexen Geometrie”, and was also supported by a VIGONI-
DAAD Program. A first draft of this article took origin from the lectures by
the second author at the G.A.C. Luminy Meeting, october 2005: thanks to the
organizers!
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given numerical invariants lying in the admissible range, i.e., fulfilling the re-
quired inequalities, does there exist a surfaces having these invariants. We
shall however more broadly consider the three classical invariants K 2. Dy s
which determine the other invariants x :=1 — q + pg,e = 12x — K2,

An important new inequality, which Severi tried without success to es-
tablish, and which has been attacked for many years with partial results by
several authors, asserts that a surface of maximal Albanese dimension satisfies
the inequality K2 > 4. We will report on Pardini’s surprisingly simple proof
of this so-called Severi’s conjecture (cf. [Par05]).

The study of the pluricanonical maps is an essential technique in the
classification of surface of general type. The main results concerning the
m-canonical maps with m > 3 go back to an earlier period and we refer
to [Cat87b] for a report on them.

We will report in the second chapter on recent developments concerning
the bicanonical map; we would like to mention Ciliberto’s survey (cf. [Cil97])
on this topic for the state of art ten years ago. Here instead, we combine
a discussion of this topic with the closely intertwined problem of classification
of surfaces with low values of the numerical invariants.

In the third chapter we report on surfaces of general type with geometric
genus p, equal to four, a class of surfaces whose investigation was started
by Federigo Enriques (cf. chapter VIII of his book 'Le superficie algebriche’,
[Enr49]).

By Gieseker’s theorem we know that for fixed K 2 and x there exists a quasi
projective coarse moduli space Mg , for the birational equivalence classes
of surfaces of general type. It is a very challenging problem to understand the
geometry of these moduli spaces even for low values of the invariants. The
case py = 4 is studied via the behaviour of the canonical map. While it is still
possible to divide the moduli space into various locally closed strata according
to the behaviour of the canonical map, it is very hard to decide how these
strata patch together.

Using certain presentations of Gorenstein rings of codimension 4 intro-
duced by M. Reid and D. Dicks, which arrange the defining equations as
Pfaffians of certain matrices with many symmetries in such a way that these
equations behave well under deformation, it is possible to exhibit explicit de-
formations, which allow to “connect” certain irreducible components of the
moduli space.

Inspired by a construction of A. Beauville of a surface with K 2 =8,
pg = q = 0, the second author defined Beauville surfaces as surfaces which are
rigid and which admit an unramified covering which is isomorphic to a product
of curves of genus at least 2. In this case the moduli space of surfaces orientedly
homeomorphic to a given surface consists either of a unique real point, or
of a pair of complex conjugate points corresponding to complex conjugate
surfaces.
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These surfaces, and the more general surfaces isogenous to a product,
not only provide cheap counterexamples to the Friedman-Morgan speculation
(which will be treated more extensively in the sixth section of this article),
but provide also a wide class of surfaces quite manageable in order to test
conjectures, and offer also counterexamples to various problems. The ease
with which one can handle these surfaces is based on the fact that these
surfaces are determined by “discrete” combinatorial data.

Beauville surfaces, their relations to group theory and to Grothendieck’s
theory of 'Dessins d’enfants’ will be discussed in the fourth chapter.

It is a very difficult and very intriguing problem to decide whether two
algebraic surfaces, which are not deformation equivalent, are in fact diffeo-
morphic.

The theory of Lefschetz fibrations provides an algebraic tool to prove that
two surfaces are diffeomorphic. By a theorem of Kas (which holds also in the
symplectic context) two Lefschetz fibrations are diffeomorphic if and only if
their corresponding factorizations of the identity in the mapping class group
are equivalent under the equivalence relation generated by Hurwitz moves
and by simultaneous conjugation. We outline the theory, which was used with
success in [CWO04] in chapter five, which we end with a brief report on the
status of two very old conjectures by Chisini concerning cuspidal curves and
algebraic braids.

As already mentioned before, one of the fundamental problems in the the-
ory of surfaces of general type is to understand their moduli spaces, in particu-
lar the connected components which parametrize the deformation equivalence
classes of minimal surfaces of general type. By a classical result of Ehresmann,
two deformation equivalent algebraic varieties are diffeomorphic. The other di-
rection, i.e., whether two diffeomorphic minimal surfaces of general type are
indeed in the same connected component of the moduli space, was an open
problem since the eighties. We discuss in the last chapter the various coun-
terexamples to the Friedman-Morgan speculation, who expected a positive
answer to the question (unlike the second author, cf. [Kat83]).

Moreover, we briefly report on another equivalence relation introduced by
the second author, the so-called quasi étale-deformation (Q.E.D.) equivalence
relation, i.e., the equivalence relation generated by birational equivalence, by
quasi étale morphisms and by deformation equivalence. For curves and sur-
faces of special type two varieties are Q.E.D. equivalent if and only if they
have the same Kodaira dimension, whereas there are infinitely many surfaces
of general type, which are pairwise not Q.E.D. equivalent.
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1 Old and New Inequalities

1.1 Invariants of Surfaces

Let X be a compact complex manifold and let 2% be its canonical bundle,
i.e., the line bundle of holomorphic n—forms (usually denoted by wx, since it
is a dualizing sheaf in the sense of Serre duality). A corresponding canonical
divisor is usually denoted by Kx.

To X one associates its canonical ring

R(X) = @monO(w?ém).
The trascendency degree over C of this ring leads to
e the Kodaira dimension x(X) :=tr(R(X)) — 1,

if R(X) # C, otherwise x(X) := —oo. The Kodaira dimension is invariant
under deformation (by Siu’s theorem [Siu02], generalizing Iitaka’s theorem
for surfaces) and can assume the values —00,0,...,n =dim X .

Definition 1. X is said to be of general type if the Kodaira dimension is
mazimal, K(X) = dim X.

We are interested in the case of surfaces, i.e., of manifolds of dimension 2,
of general type.

The three principal invariants under deformations for the study of these
surfaces are

e the self intersection of the canonical class K g. of a minimal model,
e the geometric genus p, := h’(wx) and
e the irregularity ¢ := h'(Og) = hO(£2}).

The equality h'(Og) = h°(§2%) follows by Hodge theory since every algebraic
surface is projective.

The invariants we have introduced, with the exception of K%, are not only
deformation invariants but also birational invariants.

Definition 2. A smooth surface S is called minimal (or a minimal model)
iff it does not contain any exceptional curve E of the first kind (i.e. E = P,
E?=-1)

Every surface can be obtained by a minimal one (its “minimal model”)
after a finite sequence of blowing ups of smooth points; this model is more-
over unique if x(S) > 0 (see [11.4.4, II1.4.5 and II1.4.6 of [BHPV04]). Thus,
every birational class of surfaces of general type contains exactly one minimal
surface, and one classifies surfaces of general type by studying their minimal
models. To each minimal surface of general type we will associate its numerical

o type (KZ,pg.4),
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a triple of integers given by the three invariants introduced above.
In fact these determine all other classical invariants, as

e the Euler-Poincaré characteristic of the trivial sheaf x(Og) =1 — ¢ + Dgi
¢ the topological Euler characteristic e(S) = c3(S) = 12x(Og) — K2;
e the plurigenera P, (S) := h%(w§™) = x(0s) + (3) K2.

The epression for c; is a classical theorem of M. Noether, and the expression
for the plurigenera follows by Riemann-Roch and by Mumford’s vanishing
theorem.

By the theorems on pluricanonical maps (cf. [Bom73]), minimal surfaces
S of general type with fixed invariants are birationally mapped to normal
surfaces X in a fixed projective space of dimension Ps(S) — 1. X is uniquely
determined, is called the canonical model of S, and is obtained contracting
to points all the (-2)-curves of S (curves E = P!, with E? = —2).

Let us recall Gieseker’s theorem

Theorem 1 (Gieseker [Gie77]). There erists a quasi-projective coarse mod-
uli scheme for canonical models of surfaces of general type S with fized K%
and cz(S).

In particular, we can consider the subscheme M K2,p,,q cOrresponding to
minimal surfaces of general type of type (K2,p,,q). By the above theorem,
it is a quasi projective scheme, in particular, it has finitely many irreducible
components.

It is a dream ever since to completely describe M K2 for as many types

Pg-q
as possible.
1.2 Classical Inequalities and Geography
Obviously the first question is: for which values of (K2, p,, q) is M K2 .p,,q DOD

empty?

For example, it is clear that py(S) and q(S) are always nonnegative, since
they are dimensions of vector spaces.

In fact much more is known. In the following table we collect the well
known classical inequalities holding among the invariants of minimal surfaces
of general type:

KZ>1 x>1
(N) Ki>2p,—4 or the weaker K% > 2x(0Og) — 6
(D) ifg>0, K% > 2p, or the weaker if ¢ > 0, K2 > 2x(Os)
(MY) K% <9x

We have labeled by (N)= Noether, (D) = Debarre, (MY) = Miyaoka-Yau
the rows, corresponding to the names of the inequalities ([Deb82], [Deb83],
[Miy77], [Yau78], see also [BHPV04], chap. 7).
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K’ A
X=1
MY S D N

Fig. 1. The geography of minimal surfaces of general type

In figure 1 we have drawn the limit lines (i.e., where equality holds) of the
various inequalities in the (x, KZ)-plane.

The above listed inequalities show that the pair of invariants x, K2 of
a minimal surface of general type gives a point with integral coordinates in
the convex region limited by the “bold” piecewise linear curve. Moreover, if
q > 0 this point cannot be at the “right” of the line D.

We drew one more line in our picture, labeled by S. This is the Severi line
K? = 4y, i.e., the equality case of the Severi inequality K? > 4y < K? > Ze,
which will be discussed in detail at the end of this section.

1.3 Surfaces Fibred over a Curve

An important method for the study of surfaces of general type is to consider
relatively minimal fibrations of surfaces over curves f : S — B.

Definition 3. A fibration f : S — B is a surjective morphism with connected
fibres. We are interested in the case of fibrations of surfaces to curves, meaning
that in this paper S and B will always be smooth compact complex manifolds
of respective dimensions 2 and 1.

The fibration is said to be relatively minimal if f does not contract any
rational curve of self intersection —1 to a point.
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One denotes

by b the genus of the base curve B;
by g the genus of a general fibre.

To avoid confusion, let us point out that a fibration is called rational or
irrational according to the genus b of the base being 0 or > 0. On the other
hand, the genus of the fibration is the genus g of the fibre. For example, if we
say f is a genus 2 rational fibration, we intend that ¢ = 2 and b = 0.

The classical way of saying: a genus b pencil of curves of genus g is however
still the most convenient way to describe a fibration.

To a relatively minimal fibration f one associates

e its relative canonical bundle wg|p := ws ® f*(wy) and
e the sheaves (VYn > 0) V,, := f. (w?ﬁg).

The sheaves V;, are vector bundles (i.e., locally free sheaves) with very nice
properties.

Theorem 2 (Fujita [Fuj78a], [Fuj78b])). The vector bundles V,, are semi-
positive, i.e., every locally free quotient of it has nonnegative degree.

To be more precise, V; is a direct sum of an ample vector bundle with
q(S) — b copies of the trivial bundle and with some undecomposable stable
degree 0 vector bundle without global sections. Zucconi [Zuc97] proved more-
over that if one of those stable bundles has rank 1, then it is a torsion line
bundle.

For n > 2 we have:

Theorem 3 (Esnault-Viehweg [EV90]). Vn > 2 the vector bundle V, is
ample unless f has constant moduli, which means that all the smooth fibres
are isomorphic.

Since le*wS[B = Op by relative duality, and R! f*w?‘% =0Vn >2 by
the assumption of relative minimality, one can compute the Euler character-
istic of V,, by Riemann-Roch, and consequently its degree.

We introduce the following invariants of the fibration f:

e the self intersection of the relative canonical divisor
K} = wgp - wep = K§ —8(g — 1)(b— 1),
e the Euler characteristic of the relative canonical divisor
xf = x(wsip) = x(Os) = (g - 1)(b— 1),

o its slope A(f) := K?/Xf-
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The slope is clearly defined only for x; # 0, or equivalently (as we will see
soon) if the fibration is not a holomorphic bundle.
The above mentioned computation gives

-1
degVn:xwa%

2
Ky
and since by Fujita’s theorem these numbers are nonnegative this gives the two
inequalities K2 > 0 and xf > 0 respectively known as Arakelov’s inequality
(cf. [Ara71]) and Beauville’s inequality (cf. [Bea82]).

In fact, we have the following list of inequalities

(A) K?>0,ie, KZ>8(g—1)(b—-1),
(B) x520,1e,x(0s)=(g—-1)(b-1),
(ZS) ¢2(S) > 4(b—1)(g—1),
(NN)g<b+y,

(X) 4-35<X(f) <12

Here the meaning of the labeling is the following: (A) = Arakelov’s inequal-
ity, (B) = Beauville’ inequality, (X) = Xiao’s inequality (also known as slope
inequality), (NN) = no name’s inequality, (ZS) = Zeuthen-Segre. A proof of
those inequalities can be found in [Bea82] with the exception of the slope
inequality, proved in [Xia87] (see also [CHS88] in the semistable case).

The equality cases of the first 4 inequalities are well described:

if equality holds in (A), f has constant moduli;

equality holds in (B) < f has constant moduli and is smooth;

for g > 2, equality holds in (ZS) & f is smooth;

q = b+ g & f is birationally equivalent to the projection of a product
B x F to the first factor.

In particular, we see that the slope is defined whenever the fibration is not
a holomorphic bundle, since the denominator x s vanishes iff equality holds in
Beauville’s inequality.

An important consequence is the following

Theorem 4 (Beauville). If X is a minimal surface of general type, then
pg > 2q — 4. Moreover, if p, = 2q — 4, then S is a product of a curve of genus
2 with a curve of genus q — 2.

Note for later use (see next section) the following

Corollary 1. If p, = q (i.e., if x(Os) = 1), then p, = q < 4. Moreover,
minimal surfaces of general type with p, = q = 4 are exactly the products of
two genus 2 curves.

Proof of theorem 4. The standard wedge product on 1—forms induces a nat-
ural map

Az A2HO(NL) — HO(02%)
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Recall that ¢ = dim H°(£2%), py = dim HO(£2%). Let us assume p, < 2q — 4.

By a dimension count, if p, < 2g — 4, the projective linear subspace of
P(A2H(£2})) corresponding to the kernel of the above map must intersect the
Pliicker embedding of the Grasmannian Go(HY(£2})) (which has dimension
2q — 4), and therefore there are two linearly independent 1—forms w; and wo
such that the following holomorphic two form is identically zero: w; Awy = 0.

By the theorem of Castelnuovo-De Franchis there is a fibration f : S — B
with base of genus b > 2, and two holomorphic 1—forms a;, ay € H(02%)
such that f*a; = w;. Since S is of general type, also g > 2.

Then

Xf20=x(0s)=2(b-1)(g-1)=0b-2)(g—-2)+b+g—-3>q¢-3.

So we have 1 —q+pg > q—3 < pgy > 2q — 4.

If p, = 2g — 4, all inequalities are equalities and then, since ¢ = b+ g and
(b—2)(g —2) =0, S is a product of two curves of genus at least 2, and one
of the two must have genus exactly 2.

O

1.4 Severi’s Inequality

We recall that the Albanese variety Alb(X) of a compact Kihler manifold X
is the cokernel of the natural map

/:Hl(X, Z) — HY(2'(Xx))Y

defined by integrating 1—forms on 1-cycles.
The Albanese morphism

a: X — Alb(X)

is defined (up to translations in Alb(X)) by fixing a point py € X, and by
associating to each point p € X the class in Alb(X) of f;, where the integral
is taken along any path between pg and p.

Recall that, if X is projective (as any surface of general type), Alb(X) is
an abelian variety (of dimension q).

The Albanese morphism is a powerful tool for studying irreqular surfaces
(¢ > 0) and in particular:

Definition 4. A variety X is called of maximal Albanese dimension if the
image of the Albanese morphism has the same dimension as X.

This is the general case for surfaces, since otherwise the Albanese morphism
is a fibration onto a smooth curve of genus q. We see then that for surfaces
maximal Albanese dimension is equivalent to the non existence of a genus ¢
pencil.

We can now state the theorem known as Severi’s inequality
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Theorem 5 (Pardini [Par05]). If S is a smooth complex minimal surface
of mazimal Albanese dimension, then K% > 4x.

This theorem was proved only very recently by R. Pardini, but it has a long
story, which we briefly sketch in the following.

Severi’s Conjecture

The inequality takes its name from F. Severi, since he was the first to claim
the result in the 30’s [Sev32].

His proof turned out to be wrong, as was pointed out in [Cat83], since it
was based on the assertion that a surface with irregularity q either contains
an irrational genus ¢ fibration, or the sections of H%(£2}) have no common
zero. Counterexamples were given in [Cat84], where there were constructed
bidouble covers S — X of any algebraic surface with, among other properties,
q(S) = ¢(X). If X has no irrational pencils, since the Albanese map of S
factors through the cover, then also S has no irrational pencils. But any
ramification point of the cover is a base point for HO(£2}).

Therefore Severi’s inequality was posed in [Cat83] as Severi’s conjecture,
a conjecture on surfaces of general type, since for surfaces with x(S) <1 it is
a straightforward consequence of the Enriques-Kodaira classification. It had
also been posed as a conjecture by M. Reid (conj. 4 in [Rei79]) who proved
the weaker K2 > 3x.

Proofs in Special Cases

In the 80’s, Xiao’s work on surfaces fibred over a curve was mainly motivated
by Severi’s conjecture. In [Xia87] he proved the slope inequality and Severi’s
conjecture for surfaces having an irrational pencil.

In the 90’s Konno [Kon96] proved the conjecture in the special case of
even surfaces, i.e., surfaces whose canonical class is 2— divisible in the Picard
group.

Finally, at the end of the 90’s, Manetti [Man03] could prove the inequality
for surfaces of general type whose canonical bundle is ample.

Manetti’s Proof

Manetti considers the tautological line bundle L of the P!—bundle
P(£2L) — S; standard computations give

3(K% —4x) = L% (L + 7 Kg).

Then, using the fact that 2} is generically globally generated, he can write
the right hand side of the above equation as 2KgF + (L + 7*Kg)C for an
effective 1—cycle C in P(£2}), and where E is the maximal effective divisor



