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Introduction

Manifolds are the central geometric objects in modern mathematics. An attempt
to understand the nature of manifolds leads to many interesting questions. One of
the most obvious questions is the following.

Let M and N be manifolds: how can we decide whether M and N are homo-
topy equivalent or homeomorphic or diffeomorphic (if the manifolds are smooth)?

The prototype of a beautiful answer is given by the Poincaré Conjecture. If
N is S™, the n-dimensional sphere, and M is an arbitrary closed manifold, then
it is easy to decide whether M is homotopy equivalent to S™. This is the case if
and only if M is simply connected (assuming n > 1, the case n = 1 is trivial since
every closed connected 1-dimensional manifold is diffeomorphic to S!) and has the
homology of S™. The Poincaré Conjecture states that this is also sufficient for the
existence of a homeomorphism from M to S™. For n = 2 this follows from the well-
known classification of surfaces. For n > 4 this was proved by Smale and Newman
in the 1960s, Freedman solved the case in n = 4 in 1982 and recently Perelman
announced a proof for n = 3, but this proof has still to be checked thoroughly
by the experts. In the smooth category it is not true that manifolds homotopy
equivalent to S™ are diffeomorphic. The first examples were published by Milnor
in 1956 and together with Kervaire he analyzed the situation systematically in the
1960s.

For spheres one only needs very little information to determine the homeo-
morphism type: the vanishing of the fundamental group and control of the homol-
ogy groups. Another natural class of manifolds is given by aspherical manifolds.
A CW-complex is called aspherical if the homotopy groups vanish in dimension
> 1, or, equivalently, if its universal covering is contractible. The Borel Congecture,
which is closely related to the Novikov Conjecture, implies that the fundamental
group determines the homeomorphism type of an aspherical closed manifold.

For more general manifolds with prescribed fundamental group the classi-
fication is in general unknown even if the fundamental group is trivial. In this
situation it is natural to construct as many invariants as possible hoping that at
least for certain particularly important classes of manifolds one can classify them
in terms of theses invariants. The most important invariants after homotopy and
(co)homology groups are certainly characteristic classes which were defined and
systematically treated in the 1950s. There are two types of characteristic classes
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for smooth manifolds: the Stiefel- Whitney classes wy(M) in H*(M;Z/2) and the
Pontrjagin classes px(M) € H**(M;Z). The nature of these classes is rather dif-
ferent. The Stiefel-Whitney classes of a closed manifold can be expressed in terms
of cohomology operations and so are homotopy invariants, the Pontrjagin classes
are diffeomorphism invariants (for smooth manifolds, and only for those they are
a priori defined), but not homeomorphism or even homotopy invariants in gen-
eral. Only very special linear combinations of the Pontrjagin classes are actually
homotopy invariants.

For example, the first Pontrjagin class of a closed oriented 4-manifold p; (M)
is a homotopy invariant. The reason is that (p;(M),[M]) = 3-sign(M), where
sign(M) is the signature of the intersection form on H?(M; Q). The signature is by
construction a homotopy invariant. More generally, Hirzebruch defined a certain
rational polynomial in the Pontrjagin classes (for a definition of Pontrjagin classes
see [171]) , the L-class

LM) = L(p1(M),p2(M),...) € PH"(M;Q).

i>0
Its i-th component is denoted by
Li(M) = Li(pi(M),p2(M),...,pi(M)) € H*(M;Q).

The famous Signature Theorem of Hirzebruch says that the evaluation of Ly (M)
on the fundamental class [M] gives the signature of a 4k-dimensional manifold M:

Sign(M) = (‘Ck(pl(M)v oo apk(M))7 [M]>

One can show that a polynomial in the Pontrjagin classes gives a homotopy in-
variant if and only if it is a multiple of the k-th L-class.

This sheds light on the homotopy properties of the polynomial Li(M) of a
4k-dimensional manifold M. But what can one say about the other polynomials
L1(M), L2(M), L3(M),...? Understanding £;(M) is — by Poincaré duality —
equivalent to understanding the numerical invariants

(U Li(M),[M]) € Q (0.1)

for all z € H™ (M), where n = dim(M). One may ask whether these numerical
invariants are homotopy invariant in the following sense: If g: N — M is an
orientation preserving homotopy equivalence, then

{zULi(M),[M]) = (g"(z)ULi(N),[N]). (0.2)

In general, these numerical invariants are not homotopy invariants. The
Signature Theorem implies that the expression (0.1) is homotopy invariant for
all z € H°(M;Q). Novikov proved the remarkable result in the 1960s that for
dim(M) = 4k + 1 and £ € H'(M) the expression (0.1) is homotopy invariant.
This motivated Novikov to state the following conjecture.
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Let G be a group. Denote by BG its classifying space which is up to homotopy
uniquely determined by the property that it is an aspherical CW-complex with G
as fundamental group. Novikov conjectured that the numerical expression

(ffm)uL(M),[M]) € Q (0.3)

is homotopy invariant for every map f: M — BG from a closed oriented n-
dimensional manifold M to BG and every class z € H"~*(M; Q). More precisely,
the famous Novikov Conjecture says that if f': M’ — K is another map and
g: M — M’ is an orientation preserving homotopy equivalence such that flogis
homotopic to f, then

(ff@)VLi(M),[M]) = ((f)"(z) U L(M),[M])).

Notice that Novikov’s result that (0.2) holds in the case dim(M) = 4k + 1 and
z € H'(M) is a special case of the Novikov Conjecture above since S is a model
for BZ and a cohomology class z € H'(M) is the same as a homotopy class of
maps f: M — S, the correspondence is given by associating to the homotopy
class of f: M — S' the pullback f*(z), where z is a generator of H!(S?).

Looking at this conjecture in a naive way one does not see a philosophical
reason why it should be true. Even in the case of the polynomial £, where 4k is
the dimension of a manifold, the proof cannot be understood without the signature
theorem translating the L-class to a cohomological invariant, the signature. In this
situation it is natural to ask for other homotopy invariants (instead of the signa-
ture) hoping that one can interpret the expressions (0.3) occurring in the Novikov
Conjecture in terms of these invariants. These expressions (0.3) are called higher
signatures. One can actually express them as signature of certain submanifolds.
But this point of view does not give homotopy invariants.

It is natural to collect all higher signatures and form from them a single
invariant. This can be done, namely, one considers

sign®(M, f) == f.(LM)NM]) € @ Hn1(BG;Q),

1€Z,i>0

the image of the Poincaré dual of the L-class under the map induced from f. An
approach to proving the Novikov Conjecture could be to construct a homomor-
phism

AC: EB Hy_4i(BG;Q) — L(G)

1€Z,i>0

where L(G) is some abelian group, such that A% (signg(M)) is a homotopy invari-
ant. Then the Novikov Conjecture would follow if the map A€ is injective. Such
maps will be given by so-called assembly maps.

The construction of such a map is rather complicated. A large part of these
lecture notes treats the background needed to construct such a map. In particular,
one needs the full machinery of surgery theory. We will give an introduction to



Xiv Introduction

this important theory. Roughly speaking, surgery deals with the following prob-
lem. Let W be a compact m-dimensional manifold whose boundary is either empty
or consists of two components My and M; and f: W — X a map to a finite CW-
complex. If the boundary of W is not empty, we assume that f restricted to M,
and M, is a homotopy equivalence. Then X is a so-called Poincaré complez, some-
thing we also require if the boundary of W is empty. The question is whether we
can replace W and f by W’ and f’ (bordant to (W, f)) such that f’ is a homo-
topy equivalence. If the boundary of W is not empty, then W’ is an h-cobordism
between Mo and M;. In general it is not possible to replace (W, f) by (W', f')
with f’ a homotopy equivalence. Wall has defined abelian groups L (7, (X)) and
an obstruction §(W, f) € L (m1(X)) whose vanishing is a necessary and suffi-
cient condition for replacing (W, f) by (W’, f’) with f’ a homotopy equivalence, if
m > 4. One actually needs some more control, namely a so-called normal structure
on W. All this is explained in Chapters 2, 10-14 and Chapter 17.

Why is it so interesting to obtain an h-cobordism? If X is simply-connected,
and the dimension of W is greater than five, the celebrated h-cobordism theorem
of Smale says that an h-cobordism W is diffeomorphic to the cylinder over M,. In
particular, My and M, are diffeomorphic. There is a corresponding result for topo-
logical manifolds. In the situation which is relevant for the Novikov Conjecture, X
is not simply-connected and then the h-cobordism theorem does not hold. There
is an obstruction, the Whitehead torsion, sitting in the Whitehead group which
is closely related to the algebraic K-group. If the dimension of the h-cobordism
W is larger than five, then the vanishing of this obstruction is necessary and suf-
ficient for W to be diffeomorphic to the cylinder. This is called the s-cobordism
theorem. The Whitehead group, the obstruction and the idea of the proof of the
s-cobordism theorem are treated in Chapters 5-8.

In Chapters 15-16 we define the assembly map and apply it to prove the
Novikov Conjecture for finitely-generated free abelian groups.

What we have presented so far summarizes and explains information which
was known around 1970. To get a feeling for how useful the Novikov Conjecture
is, we apply it to some classification problems in low dimensions (see Chapter 0).

In the rest of the lecture notes we present some of the most important con-
cepts and results concerning the Novikov Conjecture and other closely related
conjectures dating from after 1970. This starts with an introduction to spectra
(see Chapter 18) and continues with classifying spaces of families, a generalization
of aspherical spaces (see Chapter 19). With this we have prepared a frame in which
not only the Novikov Conjecture but other similar and very important conjectures
can be formulated: the Farrell-Jones and the Baum-Connes Conjectures. After
introducing equivariant homology theories in Chapter 20, these conjectures and
their relation to the Novikov Conjecture are discussed in Chapters 21-23. Finally,
these lecture notes are finished by Chapter 24 called “Miscellaneous” in which the
status of the conjectures is summarized and methods and proofs are presented.
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It is interesting to speculate whether the Novikov Conjecture holds for all
groups. No counterexamples are known to the authors. An interesting article ex-
pressing doubts was published by Gromov [102].

We have added a collection of exercises and hints for their solutions.

From the amount of material presented in these lecture notes it is obvious,
that we cannot present all of the details. We have tried to explain those things
which are realistic for the very young participants of the seminar to master and we
have only said a few words (if anything at all) at other places. People who want to
understand the details of this fascinating theory will have to consult other books
and often the original literature. We hope that they will find our lecture notes
useful, since we explain some of the central ideas and give a guide for learning the
beautiful mathematics related to the Novikov Conjecture and other closely related
conjectures and results.

We would like to thank the participants of this seminar for their interest
and many stimulating discussions and Mathematisches Forschungsinstitut Ober-
wolfach for providing excellent conditions for such a seminar. We also would like to
thank Andrew Ranicki for carefully reading a draft of this notes and many useful
comments.
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Chapter 0

A Motivating Problem

The classification of manifolds is one of the central problems in mathematics.
Since a complete answer is (at least for manifolds of dimension > 4) not possible,
one firstly has to fix certain invariants in such a way that the classification is in
principle possible. The reason why the classification of manifolds is impossible is
reduced to the impossibility of classifying their fundamental groups. Thus as a
first invariant one has to fix the fundamental group. Then the optimal answer
would be to find invariants which determine the diffeomorphism (homeomorphism
or homotopy) type. In recent years, low dimensional manifolds (in dimension up to
7) occurred in various mathematical and non-mathematical contexts. We motivate
the Novikov Conjecture by considering the following problem:

Problem 0.1 (Classification of manifolds in low dimensions with 7, (M) = Z2 and
ma(M) = 0). Classify all connected closed orientable manifolds M in dimensions
< 6 with fundamental group m, (M) = Z&Z and second homotopy group ma(M) =0
up to

(1) homotopy equivalence;
(2) homeomorphism;
(3) diffeomorphism.

Here and in the following we always mean orientation preserving maps.

0.1 Dimensions < 4

Since all closed connected 1-manifolds are diffeomorphic to S 1. there is no example
in dimension 1.

In dimension 2 there is only one such manifold, the torus T2 = S x S!. Here
the classification up to the relations i)-iii) agree.
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In dimension 3 there is no manifold with fundamental group Z@®Z. The reason
is that the classifying map of the universal covering of such a 3-manifold f: M —
T? is 3-connected. Hence it induces isomorphisms H,(f): Hy(M) = H,(T?) and
HP(f): HP(T?) = HP(M) for p < 2. Poincaré duality implies H(M) = Hy(M).
This yields a contradiction since Ho(T?) = Z and H,(T?) = Z2.

There is also no such manifold M in dimension 4 by the following argument.
As above for 3-manifolds we conclude that Hy(M) = Z. Poincaré duality implies
for the Euler characteristic x(M) = 1. Now we note that all finite coverings of M
are again manifolds of the type we investigate. Namely the fundamental group is
a subgroup of finite index in Z & Z and so isomorphic to Z @ Z. And the higher
homotopy groups of a covering do not change. Now consider a subgroup of index
k> 1in m (M) and let N be the corresponding covering. Then x(N) = k- x(M).
Since N is a manifold under consideration we have y(N) = 1. This leads to a
contradiction.

0.2 Dimension 6

In dimension 6 one has an obvious example, namely T2 x S*. But there are many
more examples coming from the following construction.

Example 0.2 (Constructing manifolds by surgery). We start with a simply con-
nected smooth 4-manifold M with trivial second Stiefel-Whitney class w,(M) and
consider T2 x M. Then we choose disjoint embeddings (82 x D*); into T? x M
representing a basis of ma(M) = m3(T? x M). For this we first choose maps from
S?2to T? x M representing a basis. The Whitney Embedding Theorem implies
that we can choose these maps as disjoint smooth embeddings. Finally we note
that since wp(T? x M) = 0, the normal bundle of these embeddings is trivial
and we use a tubular neighbourhood to construct the desired embeddings. Now
we form a new manifold by deleting the interiors of these embeddings and glue-
ing in D® x S3 to each deleted component. We denote the resulting manifold by
N(M). This cutting and pasting process is called surgery. Using standard consid-
erations in algebraic topology one shows that N(M) is an oriented manifold with
T EZO®Z, m =0 and wy = 0 (see Exercise 0.1). We will study surgery in later
chapters systematically.

Example 0.3 (A higher signature). We introduce the following invariant for the
6-manifolds NV under consideration. The second cohomology is isomorphic to Z,
and we choose a generator z € H?(N). This generator is well defined up to sign.
Let [M] be the fundamental class in Hg(M )- Taking the cup product with the
Pontrjagin class and evaluating on [M] gives our invariant:

+(zUp(N),[N]) €Z (0.4)

which is unique up to a sign +. It is easy to see (see Exercise 0.2) that for the
manifold V(M) constructed above this invariant agrees with the first Pontrjagin
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class of M evaluated at [M] up to sign:
£ {@Upi(N(M)),[N(M)]) = £(p1(M),[M]). (0.5)

The values of (p;(M), [M]) for the different simply connected smooth 4-manifolds
are known: Every integer divisible by 48 occurs [231].

We want to understand the relevance of this invariant. We firstly note that
it is unchanged if we take the connected sum with S3 x S§3. Thus it is an invariant
of the stable diffeomorphism type, where we call two closed manifolds M and N
of dimension 2k stably diffeomorphic, if there exist integers p and g, such that
Mtp(S* x S*) is diffeomorphic to Nfig(S* x S*), i.e., the manifolds M and N are
diffeomorphic after taking the connected sum with p resp. ¢ copies of S* x Sk.
The relevance of the invariant (z Up;(N),[N]) is demonstrated by the following
result

Theorem 0.6 (Stable Classification of Certain Six-Dimensional Manifolds). Two
smooth 6-dimensional closed orientable manifolds M and N with m) (M) =7, (N)
Z®Z and ma(M) = mo(N) = 0 are stably diffeomorphic if and only if

(1) in both cases wo vanishes or does not vanish;
(2) H(zUp1(M),[M]) = £ (zUpi(N),[N]).

We will give the proof of this result in Chapter 14. In our context this result
leads to the following obvious questions: Is the second invariant also a stable home-
omorphism or stable homotopy invariant? Here we define stably homeomorphic and
stably homotopy equivalent in analogy to the definition of stably diffeomorphic by
replacing in this definition diffeomorphic by homeomorphic or homotopy equiva-
lent.

The answer is in both cases non-trivial. For homeomorphisms we pass from
the Pontrjagin class p; (M) € H*(M) to the rational Pontrjagin class p; (M;Q) €
H*(N;Q). Since H*(N) is torsionfree we do not lose any information. Then we ap-
ply a deep result by Novikov (see Theorem 1.5) saying that the rational Pontrjagin
classes are homeomorphism invariants and so stable homeomorphism invariants.

The rational Pontrjagin classes are in general not homotopy invariants (see
Example 1.6). But Novikov conjectured that certain numerical invariants, the so-
called higher signatures, built from the rational Pontrjagin classes and cohomology
classes of the fundamental group are homotopy invariants. The invariant occurring
in Theorem 0.6 is one of these invariants. (We will give a proof for free abelian
groups in Chapter 16).

It should be noted that in contrast to the Pontrjagin classes the Stiefel—
Whitney classes of a manifold are homotopy invariants. Thus the condition we =0
or wy # 0 is invariant under (stable) homotopy equivalences. Thus we conclude
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Corollary 0.7. For two smooth 6-dimensional closed orientable manifolds M and
N with m(M) 2 m(N) X Z B Z and m2(M) = m2(N) = 0 the classifications up
to stable diffeomorphism, stable homeomorphism and stable homotopy equivalence
agree. In other words, the invariants from Theorem 0.6 determine also the stable
homeomorphism and stable homotopy type.

Remark 0.8 (Role of the Novikov Conjecture). The following formulation explains
the surprising role of the Novikov Conjecture. In general the homotopy classifi-
cation is a simpler question than the homeomorphism or diffeomorphism classi-
fication which one can attack by methods of classical homotopy theory. For the
6-manifolds under consideration the Novikov Conjecture implies that the stable
homotopy type determines the stable homeomorphism and even stable diffeomor-
phism type of these smooth manifolds.

0.3 Dimension 5

Now we study the manifolds in dimension 5. In dimension 5 there are at least
two such manifolds, namely 72 x S% and the sphere bundle of the non-trivial
oriented 4-dimensional vector bundle over T2. These manifolds are not homotopy
equivalent (see Exercise 0.3). Moreover, using standard techniques from homotopy
theory one can show that there are precisely two homotopy types of manifolds
under consideration, which are given by these two bundles. The next obvious
question is the determination of the homeomorphism and diffeomorphism type
of these manifolds. One can show that the diffeomorphism type is determined
by the first Pontrjagin class, and since this is a homeomorphism invariant (by
Novikov’s result mentioned above), this also determines the homeomorphism type.
But which values can the Pontrjagin class take? Here again the Novikov Conjecture
comes into play. It implies in our situation that the first Pontrjagin class is a
homotopy invariant. Since we know all homotopy types and in the examples above
the Pontrjagin class is trivial, we conclude that the Pontrjagin class is zero for our
manifolds. Thus we have again a surprising result: The homotopy type of these
5-manifolds determines the homeomorphism (and actually diffeomorphism) type!
For detailed arguments and more results we refer to [136].

Remark 0.9 (Other fundamental groups). The Novikov Conjecture is also valid for
all fundamental groups G of closed oriented surfaces. The proof of Theorem 0.6 also
holds for these fundamental groups so that Corollary 0.7 can also be generalized to
these fundamental groups. We will investigate these 6-manifolds further in [136].



