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Preface

This book develops a presentation of viscoelasticity theory oriented toward
numerical applications. It is our hope that it will be useful both as a textbook for
graduate courses and as a reference volume for engineers and researchers.The
book is structured in twelve chapters. The first eight chapters introduce basic
concepts and theoretical ideas about the viscoelastic response of solids. They
cover constitutive relations in integral and differential form, influence of tem-
perature, age and finite strain. These topics were selected aiming to make the
access to the computational viscoelastic formulations easier. It is assumed that
the reader has a background in mathematics and mechanics at the undergraduate
level. In the last five chapters a more advanced experience may be needed.

The remaining chapters address the numerical formulation of viscoelastic
problems using finite element, boundary element and finite volume methods.
Chapter 9 presents viscoelastic finite element procedures formulated on a total
Lagrangian description for large displacements and rotations with small
strains. Two alternative boundary element procedures for the solution of problems
in linear viscoelasticity are reviewed in Chap. 10: the solution in the Laplace
transformed domain and the use of a general inelastic formulation. Chapter 11
presents a two-dimensional approach for linear viscoelastic solids using a finite
volume framework. Together with the theoretical formulations, worked examples
are presented throughout the text. Finally, in Chap. 12, further examples, to
be solved with the software Abaqus, are proposed and developed. The
book concludes with three Appendices which contain auxiliary expressions
in mathematics and mechanics.

Several colleagues and students provided essential help. We mention here
professors L. A. B. Cunda (FURG), B. F. Oliveira (UFRGS) and Paul Partridge
(UnB). D. La Porta, D. Palmer and R. Sprunger (SIMULIA) helped with the
Abaqus examples, Litha Bacci draw the figures and Joice de Brito e Cunha
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checked the English text. This work is the result of collaboration between the
Federal University of Alagoas (UFAL) and the Federal University of Rio Grande
do Sul (UFRGS) with the financial support of the Brazilian Agency CAPES
through PROCAD program. The continuous support of our research by the
Brazilian Agency CNPq is also gratefully acknowledged.

Federal University of Alagoas-Brazil Severino P. C. Marques
Federal University of Rio Grande do Sul-Brazil Guillermo J. Creus
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Chapter 1
Introduction

1.1 Historical Context

First studies. It took time to discover that the properties of important materials lay
outside the classical limits of Hookean elastic solids and Newtonian viscous fluids.
Tests on the mechanical properties of silk threads, performed in 1835 by Wilhelm
Weber, showed that solid behavior could have viscous components. Later, in
1867;:James Clerk Maxwell introduced elastic properties in the description of
fluids. Boltzmann developed in 1874 the formulation for linear viscoelasticity.
Using the superposition of effects, he showed that the strain at time ¢ in response to
a general time-dependent stress history ¢(f) can be written as the sum (or integral)
of terms that involve the strain response to a step loading. The mathematician Vito
Volterra [7] developed the theory of functional and integral equations adequate to
model viscoelastic phenomena. Differential and integral representations of vis-
coelasticity [2, 3, 6] are addressed in Chap. 2.

Further developments and problems. The developments in the first half of the
twentieth century were slow and important advances in theoretical and experi-
mental rheology took place only after World War II. New materials, such as
polymers and composite materials [1, 5] posed new problems, particularly the need
to solve boundary value problems in varying conditions of temperature and
humidity. Chapter 3 introduces the state variables formalism, important for effi-
cient computation and Chap. 4 extends the viscoelastic formulation to three
dimensional situations. The effect of temperature is studied in Chap. 6, and the
Laplace transform technique, used to solve boundary value problems, is reviewed
in Chap. 5. In the analysis of materials such as rubber, soft polymers and biological
tissues strains are large and it is necessary to dispense with the infinitesimal strain
theory. To maintain objectivity in the presence of large rotations, measures like the
Cauchy-Green tensor for strain and the Piola—Kirchhoff tensors for stress are
introduced. This formulation is reviewed in Chap. 8. Biological tissues [4],

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity, 1
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2 1 Introduction

polymers and other important materials show a mechanical behavior that depends
on age. This subject is introduced in Chap. 7.

Computational viscoelasticity. Digital computers revolutionized the practice of
many areas of engineering and science, and solid mechanics was among the first
fields to use them. Many computational techniques have been used in this field, but
the one that emerged in the 1970s as the most widely adopted is the Finite Element
Method. This method was developed and put to practical use for the analysis of
aeronautical structures by Ray W. Clough and J. H. Argyris. In the most common
version of the Finite-Element Method, the domain to be analyzed is divided into
elements, and the displacement field within each element is interpolated in terms
of the displacements at the nodes. From the displacements, strains and stresses are
calculated in terms of nodal displacements. The equilibrium equations expressed
through the principle of virtual work generate a system of simultaneous equations
to be solved by the computer. With the Finite Elements Method, for the first time,
real problems could be analyzed considering the actual geometry and material
properties. First bar structures and small strain elasticity and then geometrical and
physical nonlinear problems were addressed and solved. Lately, both the Boundary
Element Method, that reduces the dimension of the problems and provides very
precise results, and the Finite Volume Method, which seems to be very efficient for
the study of non-homogeneous solids, were developed. These numerical proce-
dures are analyzed in the second part of this book, Chaps. 9, 10, 11. In Chap. 12
some computational examples and exercises are included, using Abaqus software.

1.2 Basic Experimental Results .

The characteristic feature of viscoelastic behavior is the essential role played by time.
Viscoelastic materials under constant stress increase their deformation with time,
while, under constant strain, show stresses that decrease with time. Figure 1.1
indicates the behavior of a typical viscoelastic material in a creep test characterized
by the application of a constant stress o at a time 7.

Using the unit step function H(z), defined in Appendix A, we may write this stress
history as

o(t) = aoH(t — 1) @.1)

which defines both the value of the applied stress and the time of its application.
In a creep test we measure an elastic strain component &°(instantaneous) and a
creep (delayed) component ¢°. The latter is the one that increases with time and
characterizes viscoelastic behavior. The deformation that remains after t > 1
characterizes hysteresis.

Removing the applied stress at time 7, > 1, that is, considering the stress
history

a(t) = opH(t — 19) — aoH(t — 1)) (1.2)
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Fig. 1.1 Creep test of a E®)
viscoelastic solid: histories of *
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we obtain for ¢ > 7, the strain history shown by the dotted line in Fig. 1.1. The
deformation reduction upon unloading is known as creep recovery.

In a relaxation test we have the material subjected to an imposed constant
deformation

E(I) = E()H([ — ‘C()) (]3)

and we measure the stress a() that is needed to keep strain at the constant value &.
We observe that a(r) diminishes progressively, as indicated by the stress history in
Fig. 1.2. Removing the applied deformation at time 7, that is, considering the
history

E(t) = E()H(l‘ — ‘L'()) — ti()H(t — T|> (14)



4 1 Introduction

we obtain the stress history shown in dotted lines. It is interesting to observe that in
this case we may have a change in the sign of the resultant stress; this fact may be
of importance for materials with different strengths in tension and compression.

1.3 Constitutive Relations

The general principles of mechanics (e.g. equilibrium and compatibility equations,
thermodynamic principles) are valid for all materials. The characteristic properties
of each material are specified by its constitutive equations.

A constitutive equation is a relation between forces and deformations. In
popular terms, the forces applied to a body “cause” it to deform and the quality
and amount of deformation varies according to the nature of the body. In the
present context (small deformation analysis) stresses and deformations are con-
veniently represented by Cauchy stress ¢ and infinitesimal strain ¢. Constitutive
relations will be firstly discussed in a uniaxial setting. The extension to the mul-
tiaxial case will be analyzed in Chap. 4, and the extension to finite strains, in Chap.
8. A more precise definition of the concepts of strain and stress can be found in
Appendix B and references there.

In practice, constitutive relations are firstly suggested by experiments and then
established by means of mathematical equations. New experiments, new materials,
new applications, lead to new more refined or more sophisticated models.

1.3.1 Dependence on Time History; Elastic and Viscoelastic ~
Materials '

During a typical experience, we apply to a specimen a stress history o(#), variable
in time (7o <t < o0) and we measure the corresponding strain history &(r). We
may also apply a deformation history &(#) and measure the resulting stresses a(r),
because the choice of the controlled variable is a matter of experimental conve-
nience. For an arbitrary stress history, the strain at time ¢ will depend, in general,
upon all the values of stress in the time interval of the experiment, ‘so that we.can
write

(1) = D{o(1)} (1.5)

=T

where 9 indicates a functional P : C(zy,t) = R while C(z,, ) and R indicate
respectively the set of continuous functions defined in the interval [y, ¢] and the
set of real numbers. Eq. (1.5) indicates that the value of ¢ at time ¢ depends on all
the values of a(7) for T varying between tq and ¢. 7, is an arbitrary initial time, so
that o(f) = 0 and &(r) = O for ¢t < 1.
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Similarly, we can write

o(t) = {e(0)} (1.6)

=10

Notice here the existence of two symbols representing time. ¢ is used to represent
the time of interest. For example, in (1.5) we are interested in the deformation at
time 7. This deformation depends on all the stresses applied to the material in
different instants up to time ¢. To avoid confusion, we use another symbol,z, to
represent those instants. T is a dummy variable that runs in the interval that ends in ¢.

A different functional D corresponds to each class of material. For example, in
elastic materials the deformation at time ¢ depends on the value of the stress at the
samé time : ifistantaneous, non hereditary response. Elastic materials have a very
short memory: they recall only the present stress, when t = ¢. In this case, the
functional in (1.5) is reduced to an ordinary function and

&(t) = D(a(2)). (1.7)
If the material is linearly elastic (1.7) may be still simplified to
&(t) = Do (1) (1.8)

where,D is now a constant factor, the elastic compliance, which is the inverse of
the elastic modulus E.

On the other hand, viscoelastic materials are characterized by a dependence on
the whole history of the deformation process, and their constitutive relations must
have the functional structure indicated in (1.5) and (1.6). Considering for example
the creep test, as described in Sect. 1.2, we see that its result may be expressed in
the form (1.5). In this particular case, the argument of the functional is completely
determined once we know the values of oy, ¢ and 7, being 7 a generic time for
loading. Thus, creep tests may be characterized by a functional whose argument is
formed by step functions, or, equivalently, by a function of three variables

&(t) = D(00,1,70) (1.9)

We have already seen how this function depends on #; now we will analyze its
dependence on a(the stress applied in the creep test) and to(the time at which the
creep test begins).

1.3.2 Dependence on Stress: Linearity

Figure 1.3a indicates the stress and strain histories for creep tests of a typical
material at different stress levels. We see that for small stresses the deformations
tend to stabilize, while for high stresses they grow at an increasing rate. This type
of behavior is usual in concrete, polymers and many other viscoelastic materials.
Figure 1.3b shows isochronous curves, that are obtained from Fig. 1.3a by setting
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Fig. 1.3 a Creep tests with different values of stress and the corresponding strain histories.
b isochronous curves corresponding to the tests in (a)

T as a parameter. We can do this graphically just by choosing values of 7 in
Fig. 1.3a and determining the corresponding values of ¢ and . These isochronous
(from iso: equal, chronos: time) curves are pseudo stress—strain relations, but of
course are valid only in reference to creep tests.

In the case of Fig. 1.3, the threshold of nonlinearity is about 2. Its precise
location depends on the accepted tolerance. Linearity in this context may be
characterized by superposition. Consider arbitrary stress histories of the type

a(t) = a1(1) + 02(1); T € [0, (1.10)
If they give rise to strain histories that can be expressed as s
e(7) = &1 (1) + &a(7) ’ (1.11)

where ¢;(t) and &,(t) are the strain histories corresponding to o (t) and g,(7)
separately, we say that the material is linear. Linear behavior is also referred to as
obeying the “Principle of superposition in viscoelasticity” or “Boltzmann prin-
ciple”. To check linear behavior experimentally, step functions are usually used.
The representation of nonlinear viscoelasticity is addressed in Chap. 8.
On the linear range, we may write (1.9) in the form ‘
-~
&(1) = ayD(1,7) (1.12)
where D(t, 1), the specific creep function or creep compliance, defined as the
response at time ¢ to a unit step of stress applied at time 7, fully characterizes the
behavior of a linear viscoelastic material.

In material testing it is usual to use uniaxial tension or compression loading
applying a strain history with constant rate (f) = vr. An elastic material will show
a stress history also with constant rate. This is not the case when the material is
linear viscoelastic. A typical result is shown in Fig. 1.4. Stress-time and stress—
strain relations are not linear except for very slow (v — 0) or very fast (v — o0)
loading rates.
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Fig. 1.4 Loading of a linear
viscoelastic material
(standard model) with
constant strain rate

Fig. 1.5 Surface A D(t T) t

representing the creep
function D(t, t) for a material
that hardens with age (i.e.
concrete)

%

When the limiting value of D(z, 1) is finite, i.e., lim D(z, 1) = M(t) <oo we say
t—0c

that the material is asymptotically stable. Sometimes, asymptotically stable
materials are referred to as solids, while those materials for which D(¢, t) grows
indefinitely are called fluids. For stable materials we have

oD(t,7)

1.3.3 Dependence on Age: Aging

We call aging the change in the mechanical properties of a given material due to
its age, where age is the time period between some origin more or less arbitrarily
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established and the time of observation. Concrete is a typical example of an aging
material. From the moment of casting (taken usually as age zero) it begins to
increase its strength and to decrease its deformability. The function D(z, t) that
indicates the specific creep has for concrete the form indicated in Fig. 1.5. Notice
that D(t, 1) = 0 for t < 7.

Frequently, the concept of aging involves other influences in addition to elapsed
time. Aging is different according to the environmental conditions in which the
material ages. In the case of concrete, humidity and temperature are important. In
the case of polymers factors such as temperature, humidity, UV radiation, etc.,
make a difference. In the case of a viscoelastic material without aging we have
D(t + a, T + a) = D(t, 1), Va. Thus, for a = — 1, we can write

D(t,t) =D(t — 1) (1.14)

Non-aging materials represent a special (very important) case of viscoelastic
materials. Additional formulations and examples for the aging case are given in
Chap. 7.

1.4 State Variables Formulation

Besides the functional representation described in Sect. 1.3, a state variables
representation may be used with some advantages in viscoelasticity as well as in
plasticity and damage mechanics. An advantage of the state variable approach is
that physical theories, and micro-structural information, may be introduced
directly in the formulation of the evolution equations. Another one-is that it leads
to more efficient numerical procedures. This formulation will be introduced in
Chap. 3.

1.5 Computational Viscoelasticity

Because of mathematical difficulties few real problems in viscoelasticity -have
analytical solution. As in many other areas of science, the use of numerical
analyses and digital computers had a great impact in this field. Procedures based
on techniques as Finite Elements, and more recently, Boundary Elements and
Finite Volumes allow the analysis of complex bodies and structures made of linear
and nonlinear viscoelastic materials. In Chaps. 9, 10, 11 of this book, these
numerical procedures are described. To allow the reader to have some practice
with computational procedures a few examples using the well known commercial
software Abaqus are given.



