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HERMANN WEYL LECTURES
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INDEX OF NOTATIONS

C" is complex Euclidean space with coordinates z = (Byoors 250

(z,w) = 2 z; W; and Izl = (z,2);

i=1
P" is complex projective space with homogeneous coordinates
7 [%0,...’%];
P! - C U{w} is the Riemannian sphere;
Blr] = {zeC":||z|| <t} is the ball of radius r in CM
Slr] =S N Blr] for any set SC C";
A()=1zeC:|z| <r} is the disc of radius r in C;
A = A(1) is the unit disc;
A*={£eC:0< || < 1} is the punctured disc;
A*R)={zeCm: |z;l <R; and R=(R,, +,R )} is a polycylinder in L]

A; n= (AN  x (A=K s a punctured polycylinder;

®,¥,... denote volume forms;
w,d,¥,n,--- denote (1,1) forms;
¢ V=1 G_a),

4

0

On C with z=|'ei ;

c 1 4 114 .
d =4—”rE®d6—a;Tm®dr,

n
¢ = dd€|z|? = —'2_”1< 2 dziAdEC> is the standard Kahler form on C%;
i=1

® = dd€log Hsz is the pull-back to C™ — {0} of the Fubini-Study Kahler
metric on Pn-1;

A holomorphic line bundle is denoted by L - M;
H - P" is the hyperplane line bundle;

ix



X INDEX OF NOTATIONS

D is a divisor and [D] the corresponding line bundle;

c; (L) is the Chern form (curvature form) of a Hermitian line bundle;
@(M,L) is the space of holomorphic sections of L -» M;

|L| is the projective space of divisors of sections s ¢ @(M,L);
H%R(M,R) is the 2nd deRham cohomology of M;

A real (1,1) form ¥ on M is positive in case locally
- —1 2
Y o= _°2 2 ‘/’ijdzi'\dzj

where (:ﬁij) is a positive definite Hermitian matrix;

[] denotes the class in H%R(M,R) of a closed form ¢ on M;

A class y in H%R(M,R) is positive in case x = [/] for some positive
form ¢;

Ky is the canonical line bundle of M;

L* is the dual line bundle to L » M;

O(C™ are the entire holomorphic functions on ol
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ENTIRE HOLOMORPHIC MAPPINGS IN ONE AND SEVERAL
COMPLEX VARIABLES

Phillip A. Griffiths™

INTRODUCTION

(a) Some general remarks
These talks will be concerned with the value distribution theory of an
entire holomorphic mapping
f:C" > M
where M is a compact, complex manifold. The theory began with
R. Nevanlinna’s quantitative refinement of the Picard theorem concerning

a non-constant entire meromorphic function
f:C P!,
If we let ng(a,r) be the number of solutions to the equation
f(z)=a, l|z|<r and aePl,
then Picard’s theorem says that the sum

nf(a, )+ nf(b, )+ nf(c, 1)

is eventually positive, where a,b,c are three distinct points on Pl
Roughly speaking, Nevanlinna’s refinement states that the above sum is

eventually larger than the average

tf(r)= f nf(a,r)da

a(Pl

Fice »
This work was partially supported by NSF Grant GP38886.
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4 ENTIRE HOLOMORPHIC MAPPINGS

number of solutions to the equation in question. Since the appearance of
Nevanlinna’s book [31], there has been considerable attention to the sub-
ject of value distribution theory, first in the classical case of an entire
meromorphic function [25], then in the study of entire holomorphic curves
in projective space ([44] and [45]), and, in recent years, in the general
theory of holomorphic mappings between arbitrary complex manifolds (cf.
[37] for a survey).

We shall concentrate on the equidimensional case where dim.M = n
and where f is non-degenerate in the sense that the Jacobian determinant
of f is non-identically zero. Aside from the Ahlfors theory of holomorphic
curves in PM, it is here that the defect relations of R. Nevanlinna have
been most directly generalized. For example, Picard’s theorem becomes
the assertion that no such f can omit a divisor on M which has simple
normal crossings and whose Chern class is larger than that of the anti-
canonical divisor on M. The corresponding defect relation will be proved
in Chapter 3.

Aside from proving this theorem, there are two main purposes of these
lectures. The first is to attempt to integrate more closely the deeper
analytic aspects of the classical one variable theory with the formalism
and algebro-geometric flavor in the several variable case. The second
is to try to isolate the analytic concept of growth and differential-
geometric notion of negative curvature as being perhaps most basic to the
theory. A glance at the table of contents should make it pretty clear how
our discussion has been centered around these two purposes.

One other aspect of these notes is that we have tried to give the
heuristic reasoning which historically led to the recognition that growth
and curvature were central to theory. Aside from the original proof of
Picard’s theorem using the modular function, we have included three
additional proofs, among them the ‘‘elementary proof’’ of Emile Borel in
which the central importance of growth was first clearly exhibited. Similarly,

aside from the negative curvature derivation of the general defect relation,
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we have included the two classical proofs due to R. Nevanlinna and

Ahlfors, each of which has its own distinct merit.

(b) General references and background material

The classic book in the subject is [31] by R. Nevanlinna. A second
book of his [32] and the more recent monograph by Hayman [25] contain
further discussion of the value distribution theory of an entire meromorphic
function. All that is required to read any of these books is standard basic
knowledge of complex function theory.

In several variables, we shall use the formalism of complex manifold
theory, especially that centered around divisors, line bundles, and their
Chern forms and subsequent Chern classes. The basic references here
are the books by Chern [11] and Wells [43]. In practice all that we shall
really require is fully explained in the introduction (pp. 151-155) of
Griffiths-King [22].

From several complex variables, one needs to know a little about the
local structure of an analytic hypersurface, especially as regards integra-
tion over an analytic hypersurface and Stokes’ theorem in this situation.
For the former the second chapter of Gunning and Rossi [24] is more than
sufficient, and for integration we suggest the notes by Stolzenberg [41.].

Aside from the facts that integration of a smooth differential form over
a possibly singular analytic variety is possible and that Stokes’ formula is
valid, the fundamental result we shall use concerning integration on com-

plex varieties is the Wirtinger theorem:

2 = .
Let ds” = 121 hj;
k-dimensional analytic variety, both defined in some neighborhood of the

V-1sy

closure of an open set UC C". Let ¢ = —- =
i,j

exterior (1,1) form associated to the Hermitian metric and vol (V) the

dzidij and V be respectively a Hermitian metric and

ijdzi A dij be the

2k-dimensional volume of V N U computed with respect to the Riemann-

ian metric associated to ds®. Then
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(0.1) vol(V) = & f ok
vnu
k
where " =pA---rd.
k-times
PROOF. If V* is the set of non-singular points of V, then by definition

vol(V) = vol(V*) and [ ¢k = f (,‘bk. Thus it suffices to prove
vnu V*NUu
(0.1) in case V is a complex submanifold of U, and this obviously re-

duces to establishing (0.1) in case V = U. By applying the Gram-Schmidt

process to the differentials dz;,:-,dz relative to the Hermitian metric

n
(hij)’ we may write

where the ¢, = E ajj dzj give a C* basis for the (1,0) forms over U.
i

Expanding
O)l == ai + \/—1 Bl

in real and imaginary parts, the associated Riemannian metric is

n
¥ b 2 2
ds —zai+/3i.
i=1

The volume form for this metric is, by definition,

du = a;AB; A Aa AB, .
On the other hand,

$ - ‘_l(i'dai»\?ﬁi)

i=1

so that n
¢n = (@) n! ¢1A$1 A"'A¢n/‘$n

nta, AB Ana AB,

n! du . Q.E.D.
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The principle that the volume of an analytic variety VC C" is com-
puted by integration of a differential form defined on all of C", as opposed
to the computation of arclength, surface area, etc. in the real case, is of

fundamental importance.



CHAPTER 1
ORDERS OF GROWTH

(a) Some heuristic comments
In its simplest terms, the study of entire holomorphic mappings is con-
cerned with growth. For example, when the well-known growth behavior

of a polynomial is plugged into the Cauchy integral formula

I p’(z)dz
np(o, l‘) = ;E f —p—(z)—
|z|=r

one obtains the fundamental theorem of algebra. Emile Borel realized that
growth was also essential to an understanding of Picard’s theorem, viewed
as a transcendental analogue of the fundamental theorem of algebra. Here
is the heuristic reasoning behind his proof of that theorem:

An entire holomorphic mapping f:C - p! may be written in homogene-
ous coordinates as f(z) = [fo(z), fl(z)] where f, and f; are entire holo-
morphic functions having no common zeroes. We assume that f is non-
constant and omits three points, which may be taken to be [1,0], [0, 1],
and [1,-1]. Then

h h
f0=e°, f1=e1
and
hoo h h
eo/e1+1=e2

where h,, h; and h, are entire holomorphic functions. Multiplying the

second equation by e *

gives a linear relation



