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Preface

Several physical phenomena are governed by partial differential equations.
Obviously, this is not a mere chance. Indeed, scientists and technicians,
following the scientific method introduced by Galilei, know very well that
every natural event can be analyzed by means of a related mathematical
model. This is very often based on partial differential equations. A cel-
ebrated and historical example is given by the Maxwell equations, which
admirably describe the electro-magnetic field. Other emblematic, not less
important, models are: Fourier (heat) equation, D’Alembert (wave) equa-
tion, Laplace/Poisson (potential) equation, Euler/Stokes (fluid) equations.

Mathematical modeling has been successively adopted by researchers
working in several other fields and so, at present, partial differential equa-
tions can help to explain phenomena occurring in Biology, Medicine, Econ-
omy, Sociology, and so on.

During the last two hundred years, applied mathematician involved in
the above topic have never ended. The first pioneers concentrated their
efforts on the exact solutions. Next, the attention was focused on the
qualitative analysis in order to obtain information on the solutions even
when these could not be explicitly found. In the last sixty years, also the
quantitative analysis has been strongly developed in parallel with the great
growth of computers power. At present, numerical methods provide a pow-
erful approach for solving partial differential equations and their knowledge
becomes more and more a necessary cultural luggage of applied researchers
and technicians.

This book is an elementary introduction to computational methods,
based on the finite differences, for parabolic, hyperbolic and elliptic partial
differential equations. The numerical discussion of each type of equation
is always preceded by the introduction of models in Mechanics, which are
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carefully derived. In particular, the role of the initial and boundary con-
ditions is pointed out with reference to physical situations. The numerical
analysis is concerned with the most used finite-difference methods for each
type of equation. Several examples are solved and exercises proposed to
give the Reader the opportunity to practice. Since there is no numerical
method without approximations, the accuracy of the schemes is also ana-
lyzed. Special attention is devoted to the propagation of rounding errors,
which inevitable arise during the computational process. This leads to dis-
cuss the basic concepts of stability, consistency and convergence, which are
illustrated by inductive procedures and then formalized.

Dealing with applied numerical methods sooner or later requires that
own programs have to be developed. Therefore, some examples are provided
by using the C++ language. The classic C language was evolved after 1970
by B. W. Kernigham and D. M. Ritchie. C++, developed by B. Stroustrup
in 1980s, is an extension of C. It provides the capabilities of object-oriented
programming. It is considered the most powerful and flexible language. The
Visual C4++ ! compiler is quickly introduced and Windows 2 programs are
built step by step. These programs can be easily fitted to other situations,
with small changes. The codes of the programs developed in this book are
also supplied with the enclosed CD-Rom.

Chapter 1 deals with the most used finite-difference approximations of
derivatives. In particular, the forward, central and backward approxima-
tions are derived. Chapter 2 presents the classical model of heat conduction
in solids, based on Fourier law. Also, phase-change problems are illustrated.
Chapter 3 introduces the classical explicit method for the one-dimensional
heat equation. The concepts of stability, consistency and convergence are
applied. Developing programs in C++, related to the heat equation, is
the topic of Chapters 4 and 5. Chapter 6 describes numerical methods for
parabolic equations. Some nonlinear case is also considered and a melting
problem is discussed. Furthermore, the classical explicit method is gener-
alized to the heat equation in two and three space dimensions. A program
related to this case is developed in Chapter 7. Chapter 8 is devoted to
wave motions. At first, the wave equation is derived from the model of
one-dimensional continuum. Next, we introduce the equations governing
the motions of general continuous systems. As special cases the elastic and
fluid media are examined in order to point out wave phenomena. Finally,
a free-boundary value problem is presented. Explicit and implicit finite-

1Visual C++ is a registered trademark of Microsoft Corporation
2Windows is a registered trademark of Microsoft Corporation
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difference methods for the wave equation are illustrated in Chapter 9. An
example of third-order equation is provided. Chapter 10 deals with finite-
difference methods for linear and nonlinear hyperbolic systems. Elliptic
equations are considered in Chapter 11. The motions of fluids through
porous media are examined. In Appendix A the classification of partial dif-
ferential equations is given for second-order equations and general systems
of first-order equations. Elements of Linear Algebra are briefly provided in
Appendix B.

The author is grateful to Professor N. Bellomo for encouraging him to
write this book and the pertinent suggestions, for reading the manuscript
and making various useful criticisms.

Especial thanks are due to World Scientific Publishing Co.

B. D’Acunto

University of Naples “Federico 11”7, 2004.



About the CD

The CD contains the complete source code of the three projects from the
book. Each project has a separate subdirectory on the CD: Heatl, Heat2,
Heat3. To compile any project, just copy it on the hard disk in a suitable
subdirectory, for example, C: Projects.

The executable files are also supplied, so that the programs can be
used without compiling. To run a program, double-click the related file.
Furthermore, the User will find the files where the data related to the
examples were saved.
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Chapter 1

Finite differences

The scientific community agrees that finite-difference schemes were first
used by Euler (1707-1783) to find approximate solutions of differential equa-
tions. The technique is known as Euler method. However, only after 1945
systematic research activity on the above topic has been strongly developed,
when high-speed computers began to be available.

At present, finite-difference methods provide a powerful approach to
solve differential equations and are widely used in any field of applied sci-
ences. Equations with variable coefficients and even nonlinear problem can
be treated by these techniques. Generally, the error of an approximating
solution can be made arbitrary small. Rounding errors, which inevitably
arise during the computational process, can be controlled by a preliminary
analysis of the numerical stability of finite-difference schemes. Furthermore,
numerical solutions can give suggestions to more general questions.

This chapter introduces to the most used finite-difference approxima-
tions of derivatives. In particular, the well-known forward, central and
backward approximations are presented. The analysis systematically starts
from Taylor’s series expansion so that the truncation error can be imme-
diately pointed out. Firstly, the approximation of first-order derivatives
is dealt with, and, subsequently, the analysis is developed for higher-order
derivatives. Exercises are proposed to give the Reader the opportunity to
practice. Finally, we present some finite-difference operators, which are fre-
quently found in literature. Their use can help to shorten long formulas in
some cases.
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1.1 Function discretization

Let us consider a function u(z,t) depending on two variables z € [0, L] and
t € [0,T]. A discretization of function u is obtained by considering only
the values u, ; on a finite number of points (z,t;)

u; ; = w(Ti, t;) = u(ilx, jAt), i =0,..,m, j=0,..,n, (1.1.1)

where Az = L/m, At = T/n, fig. 1.1.1. Usually, instead of u, ;, the

notation u] is also used.

4,77

t
JjAt (iAx, jAt)
IA,
Tax iAx .

Fig. 1.1.1 Space-time grid

The formula for a function of one variable is immediately derived from
(1.1.1). In addition, generalizing it in obvious way yields the case regarding
a function of three or more variables.

A basic role to estimate the error involved in finite-difference approxi-
mations of function derivatives is played by the well-known Taylor’s series
expansion

Hlor-t A = e +Zf(h)( yiaz)” A””) f<">(x+9Ax)(A7j)", (1.1.2)

where 0 < § < 1 and f® denotes the hth derivative of f. Noting that the
last term is of order (Az)™, (1.1.2) can also be written as

flz + Az) = (l)+2f<h> ) +O0((Az)"), (1.1.3)
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where the symbol O (big o) has been used, defined as follows
9(y) =0@W"), yeQ & |9y <", Vyeq, (1.1.4)

where c is a positive constant.

1.2 Finite-difference approximation of derivatives

Let us define the forward approrimation for the partial derivative u;. Ap-
plying Taylor’s series expansion (1.1.3) to u(x;,t; + At) gives

u(zi, t; + At) = u(zi, tj) + ue(zs, t;) At + O((AL)?) (1.2.1)

which, by using notation (1.1.1), is written as

Wi i1 = Ui + (ue)ij At + O((AL)?), (1.2.2)
that is,
(ue)ij A T O, (1.2.3)

Hence, it follows the approximation formula for the partial derivative of u
with respect to t, called forward approximation,
Ui j41 — Ui j
(ut)iyj ~ —ZJ—AE——A (124)
Formula (1.2.4) evidently implies a leading error of order At. Similarly,
from

(uz)ij = u—l% + O(Ax) (1.2.5)

it follows the forward approximation for u;

(uz)ij = %i (1.2.6)
with a leading error of order Azx.
The backward approximation is inferred in analogous way. Applying
Taylor’s expansion (1.1.3) to u(z;,t; — At) and u(z; — Az, t;) implies, re-
spectively, the following

Ui j — Ugj—
(uehig o = - (1.2.7)

Uj 5 — Uj—1,5
(ug)ig o L ———2 Az <, (1.2.8)
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which give the backward approximations for the first partial derivatives,
with the same leading error of the last case.

Let us define the central approrimation. Applying Taylor’s expansion
(1.1.3) with n = 4 yields

At)? At)3
Ui, j+1 =ui,j+(Ut)i,jAt+(utt)¢,j(—27)—+(um)i,j——~—( 3|) +0((At)%), (1.2.9)

(At)?

ol

(um),-,j(—Ais—kO((At)‘l). (1.2.10)

Uij—1 = Ui —(Ue)i, g Ab+(Use)s, 5 3

Subtracting the second expression from the first gives
Ui g1 — Ui j—1 = 2(ue)i j AL + O((A)?), (1.2.11)
that is,
o Ui, 541 — Uj,j—1 O((At 2 1.2.12
(ue)sg = LI 4 O((A0)2). (1:2.12)
Hence, we obtain the central approrimation for u,

Ujj+1 — Ujj—
(ui)ij ~ Lwi_‘ (1.2.13)

with a leading error of order (At)?. Similarly, it follows

(uz)i,j = wﬁ“—“ +0((Az)?). (1.2.14)
Hence,
et w1
ey 2", (1.2.15)

which gives the central approximation for u, with the same error.

The preceding finite-difference approximations consider the values of a
function on two points of the xt grid and are the most used. However,
formulas involving three or more grid points can also be deduced with a
smaller error, in general. Firstly, let us discuss the three-point forward
approzimation for u;. Using again Taylor’s expansion (1.1.3) gives

Uiji1 — Ui = ()i, ;AL + (uee)i,; (A% /2 + O((AL)?), (1.2.16)

Ui, j42 — ’U,i,j = (Ut)i,jZAt + (uu)i,ﬂ(At)z + O((At)B), (1.2.17)



