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TURBULENCE AND SHELL MODELS

Turbulence is a huge subject of ongoing research. This book bridges modern
developments in dynamical systems theory and the theory of fully developed tur-
bulence. Many solved and unsolved problems in turbulence have equivalences
in simple dynamical models, which are much easier to handle analytically and
numerically.

This book gives a modern view of the subject by first giving the essentials of
the theory of turbulence before moving on to shell models. These show much
of the same complex behavior as fluid turbulence, but are much easier to handle
analytically and numerically. Any necessary maths is explained and self-contained,
making this book ideal for advanced undergraduates and graduate students, as
well as for researchers and professionals, wanting to understand the basics of fully
developed turbulence.

Peter D.DiTLevseN is a Professor at the Niels Bohr Institute, University of
Copenhagen. As a theoretical physicist, he researches in the fields of turbulence,
statistical physics, dynamical systems and climate dynamics.



Preface

Fluids have always fascinated scientists and their study goes back at least to the
ancient Greeks. Archimedes gave in “On Floating Bodies™ (c. 250 BC) a surpris-
ingly accurate account of basic hydrostatics. In the fifteenth century, Leonardo
da Vinci was an excellent observer and recorder of natural fluid flows, while
Isaac Newton experimented with viscosity of different fluids reported in Principia
Mathematica (1687); it was his mechanics that formed the basis for describing
fluid flow. Daniel Bernoulli established his principle (of energy conservation) in a
laminar inviscid flow in Hydrodynamica (1738). The mathematics of the governing
equations was treated in the late eighteenth century by Euler, Lagrange, Laplace,
and other mathematicians. By including viscosity the governing equations were
put in their final form by Claude-Louis Navier (1822) and George Gabriel Stokes
(1842) in the Navier—Stokes equation. This has been the basis for a vast body of
research since then.

The engineering aspects range from understanding drag and lift in connection
with design of airplanes, turbines, ships and so on to all kinds of fluid transports and
pipeflows. In weather and climate predictions accurate numerical solutions of the
governing equations are important. In all specific cases when the Reynolds number
is high, turbulence develops and the kinetic energy is transferred to whirls and
waves on smaller and smaller scales until eventually it is dissipated by viscosity.
This is the energy cascade in turbulence. The difference in size between the scales
where kinetic energy is inserted into the flow and the scales where it is dissipated
as heat is huge. It ranges from, say, the whole atmosphere of the planet to the
sub-millimeter scale where viscosity of the air is important.

This fundamental aspect of turbulence can be illuminated by shell models.
Shell models have, through their simplicity, contributed to the understanding of
symmetries, scaling and intermittency in turbulent systems. Their relatively low
number of degrees of freedom in comparison to high Reynolds number flows has
enabled them to bridge the gap between the chaotic dynamics observed in low
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dimensional systems and turbulence. Their computational affordability and sim-
plicity also make them ideal tools for students entering the field of turbulence, and
for researchers to test ideas.

This book gives an introduction to the field of turbulence in the spirit of the
Kolmogorov phenomenology represented by the famous “K41” scaling relation.
The emphasis on shell models in their own right is that the governing equations
for shell models share many aspects and are structurally similar to the Navier—
Stokes equation, and they are just so much easier to handle. The book is intended
for researchers and professionals who want a fast introduction to the problem of
isotropic and homogeneous turbulence in the spirit of dynamical systems theory.
It should be accessible for advanced undergraduate and graduate students. Most
of the material has been used for teaching the subject at the graduate level. For
that, a set of problems can be found at the end of each chapter. There are two
types of problem: some address the concepts, the mathematics or completion of the
calculations leading to the results in the text. Other problems introduce concepts
or phenomena, such as Burgers equation, not treated in the main text. An asterisk *
indicates a difficult excercise. Shell models are perfect “lab-systems” for numerical
investigations, both for testing new scientific ideas and for students to reproduce
theoretical results and to familiarize with concepts like scaling relations, Lyapunov
exponents and intermittency. To maintain the flow of the main text, some of the
mathematical and technical details are deferred to appendices.
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1

Introduction to turbulence

Fully developed turbulence is the notion of the general or universal behavior in
any physical situation of a violent fluid flow, be it a dust devil or a cyclone in
the atmosphere, the water flow in a white-water river, the rapid mixing of the
cream and the coffee when stirring in a coffee cup, or perhaps even the flow in
gigantic interstellar gas clouds. It is generally believed that the developments of
these different phenomena are describable through the Navier—Stokes equation with
suitable initial or boundary conditions. The governing equation has been known
for almost two centuries, and a lot of progress has been achieved within practical
engineering in fields like aerodynamics, hydrology, and weather forecasting with the
ability to perform extensive numerical calculations on computers. However, there
are still fundamental questions concerning the nature of fully developed turbulence
which have not been answered. This is perhaps the biggest challenge in classical
physics. The literature on the subject is vast and very few people, if any, have
a full overview of the subject. In the updated version of Monin and Yaglom’s
classic book the bibliography alone covers more than 60 pages (Monin & Yaglom,
1981).

The phenomenology of turbulence was described by Richardson (1922) and
quantified in a scaling theory by Kolmogorov (1941b). This description stands
today, and has been shown to be basically correct by numerous experiments and
observations. However, there are corrections which are not explainable by the
Kolmogorov theory. These corrections are deviations in scaling exponents for
the scaling of correlation functions. The Kolmogorov theory is not based on the
Navier—Stokes equation, except for one of the very few exact relations, namely
the four-fifth law, describing the scaling of a third order correlation function.
A final theory explaining the corrections should be based on the Navier—Stokes
equation.
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Shell models of turbulence were introduced by Obukhov (1971) and Gledzer
(1973). They consist of a set of ordinary differential equations structurally similar
to the spectral Navier-Stokes equation. These models are much simpler and
numerically easier to investigate than the Navier-Stokes equation. For these
models a scaling theory identical to the Kolmogorov theory has been devel-
oped, and they show the same kind of deviation from the Kolmogorov scaling
as real turbulent systems do. Understanding the behavior of shell models in
their own right might be a key for understanding the systems governed by the
Navier-Stokes equation. The shell models are constructed to obey the same
conservation laws and symmetries as the Navier—Stokes equation. As well as
energy conservation, the models exhibit, depending on a free parameter of the
model, conservation of a second quantity which can be identified with helicity or
enstrophy. This second quantity signifies whether the models are 3D turbulence-
like where helicity is conserved, or 2D turbulence-like where enstrophy is
conserved.

In the case of 3D helical (non-mirror symmetric) turbulent flow, there exists
a dual cascade of energy and helicity to small scales. A wave number in the
inertial range smaller than the Kolmogorov wave number, where the helicity dissi-
pation becomes important, has been identified. In the case of shell models the flow
becomes non-helical from this wave number on, until energy is dissipated around the
Kolmogorov wave number. In the case of 2D turbulence a forward cascade of energy
to small scales is prohibited altogether by the cascade of enstrophy. On the contrary,
the energy is transported upscale in an inverse cascade. In the case of shell models
we can investigate under what circumstances this is compatible with equipartition-
ing of the conserved quantities in a quasi-equilibrium as predicted by equilibrium
statistical mechanics.

The corrections to the Kolmogorov scaling expressed through the anomalous
scaling exponents can be qualitatively understood as a consequence of intermittency
in the energy cascade. By simulation we can make a qualitative link between the
multi-fractal cascade models and the shell models. The relative simplicity of the
shell models also makes it possible to describe the dynamics in terms of bifurcations,
routes to chaos, Lyapunov exponents, and so on using the tools developed in the
theory of chaos for low dimensional dynamical systems.

This chapter presents a review of some of the main characteristics and unknowns
of turbulence. Turbulence is the chaotic and apparently random flow of a stirred
fluid. Fluid flows vary a lot depending on the boundaries containing the flow,
stirring, and heating. The flow in the atmosphere of a rotating planet is different
from the convection in a pot of boiling water. However, as long as the length
scales in the flow are small in comparison to the largest scales, determined by the
boundaries, and large in comparison to the molecular mean free path scales, all flows
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seem to have common characteristics. Turbulence is this common characteristic of
the flows.

1.1 The Navier-Stokes equation

Fluid mechanics is the description of fluids on scales large in comparison to the
mean free path length of the molecules constituting the fluid. In this limit the fluid
is regarded as a continuum characterized completely by a velocity field u;(x,1), a
temperature field 7'(x), a pressure field p(x) and a density field p(x). At each point
x; the fluid is then fully characterized by the six field variables: three components
of velocity, pressure, temperature, and density. In order to determine the evolution
of these we need six equations. These are derived from momentum conservation,
mass conservation, energy conservation, and the equation of state. In any concrete
setting some of the field variables might be approximately constant and the number
of equations reduced. When considering fully developed turbulence the fluid is
traditionally regarded as incompressible, which is a rather good approximation
for water and air. This immediately eliminates the equation specifying density
from consideration. When buoyancy can be neglected the temperature variations
decouple from the momentum and continuity equations and we are left with a fluid
described by the velocity and the pressure field. The dynamics of such a fluid is
described by the Navier—Stokes equation (NSE)

Ou; + ujdju; = —0;p + vojju; +fi, (1.1)

and the continuity equation
8,-u,- =0. (I 2)

The NSE describes the conservation of momentum. In this book we mainly use
the tensor notation: dju; = du;/dx;, Ojjux = azuk/ax,-a.x;,-, etc., and the Einstein
convention of summing repeated indices; dif = Af denotes the Laplacian of f.
The equation states that the acceleration of a fluid particle equals the sum of the
forces acting on the fluid particle (per unit mass). The left hand side is the material
derivative of the velocity field, where the second term is the advection. The first
term on the right hand side is the pressure gradient force, the second is the viscous
friction (viscosity) and the last term represents all other forces per unit of mass.
The last term is, historically speaking, not a part of the NSE but we will specify it
whenever convenient.

The continuity equation is the equation for conservation of mass, where in the
case of an incompressible fluid the density does not appear. The inverse of the
density, which normally appears in front of the gradient of pressure in (1.1) is thus
also absorbed in the units of pressure. From these (four) equations, together with
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boundary and initial conditions, the three components of the fluid velocity u; and
the pressure p can in principle be determined.

However, no general solutions to the NSE are known and a solution can be found
only for very simple laminar flows. Pressure can immediately be eliminated from
the NSE using the continuity Equation (1.2). Assuming the force to be rotational,
9;fi = 0, we obtain a Poisson equation for the pressure by applying the divergence
operator to the NSE

8,-,~p = —aiujaju,‘, (1-3)

which we can formally solve by applying the inverse Laplacian
p= -a&l(aiujaju,‘). (1.4)

We make sense of the inverse of a differential operator when expressing the NSE
in terms of Fourier components.
The NSE can be brought to a dimensionless form by defining

x=Lx,u=Un,t=(L/U), (1.5)

where L is the length scale of the largest variations in the flow. Note that L would
typically be the size of the container or basin for a bounded flow or the size of
an obstacle in an extended uniform flow; L is called the integral or outer scale;
U is the typical velocity difference at this length scale. We can think of U as the
typical velocity when coarse graining the flow at the length scale L. As it is derived
from Newton’s second law the NSE is Galilean invariant. This means that adding a
uniform velocity, say, by moving the frame of reference, does not change the NSE.
Thus the overall uniform center of mass velocity is unchanged (in the case that the
sum of external forces vanishes) and only velocity differences are important. From
L and U we can build a timescale T = L/U, which is just the time it takes the fluid
at uniform velocity U to travel the distance L. Inserting this into (1.1) and dropping
the tilde “ gives the NSE in dimensionless form:

8,u,~—|—uja,-u,- = —8,'p—I-R€_]3jju,' +fi, (1.6)
where we have defined the dimensionless Reynolds number

Res & (1.7)

v
and absorbed a factor U2 /L into the forcing term. The pressure gradient term is,
as can be seen from (1.4), dimensionally the gradient of a velocity squared, so that
it scales with changing units of length and time like the advection term. All terms
except for the viscosity are now of order unity. The viscosity is of the order of
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Figure 1.1 Low Reynolds number flow of ice where the viscosity completely
dominates the flow. The pheomenon is called an icefall. The fall is about 400 m at
the Lambert Glacier, Antarctica (NASA/Landsat).

the inverse of the Reynolds number, so that the Reynolds number is a measure of
the relative importance of the viscosity in comparison to the nonlinear terms (the
advection and the pressure gradient term) at the length scale L and velocity scale
U. The Reynolds number is the fundamental characteristic of any given flow. For
a Reynolds number smaller than one the flow will quickly be damped by viscosity,
or the viscous term will balance the external forces such as gravity, as is the case in
Figure 1.1. The viscosity acts as a smoother of irregularities and has the form of a
diffusion term. When the Reynolds number becomes larger the flow will be more
and more dominated by the nonlinear terms.

For small Reynolds numbers the flow is smooth and regular. As the Reynolds
number is increased the fluid motion in the wake becomes more and more irregular.
Increasing Reynolds number flow can be seen as a successive symmetry breaking.
For very high Reynolds numbers the regularity of the von Kdrman street shown in
Figure 1.2 disappears and the flow is completely chaotic and apparently random.
This is called fully developed turbulence. It characterizes many systems in nature,
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Figure 1.2 Atmospheric flow around Selkirk Island in the southern Pacific Ocean,
where the dense cloud cover makes the flow visible. The highest point of the island
is about 1.6 km above sea level, obstructing the flow. The phenomenon is called a
von Karman vortex street. (NASA/Landsat)

such as the flow in the atmospheric boundary layer, river flow, the wake after a
jet-engine, smoke from a cigar, and many other phenomena. All the richness of the
complex behavior of these systems is, we believe, described by the NSE. Direct
numerical simulations of the NSE indeed show some of this richness. However,
no general theory exists with which we can relate directly the NSE and the rich
phenomenology observed in nature and experiments. For high Reynolds number
flow there will be a large range of scales where the viscous dissipation is negligible.
Assuming either a non-forced decaying motion or forcing restricted to the large
scales, motion in this range will be determined by inertia. This is thus called the
inertial range. Fully developed turbulence is characterized by a long inertial range.
The structure and dynamics of different flows in this range seem in some statistical
sense to be alike and one may ask if there is some universality in the behavior of the
flows.

The common phenomenology of fully developed turbulence is attributed to
Richardson (1922). Richardson describes the flow as consisting of large swirls
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breaking up into smaller swirls, which again break up into yet smaller swirls
until finally the swirls are so small that they are smoothed out, or dissipated,
by the viscosity. The energy is inserted into the flow at large scales, it then
cascades into smaller and smaller scales until it leaves the flow at the viscous
scale. In 1941 this led Kolmogorov to develop a phenomenological theory of
turbulence.

1.2 Kolmogorov’s 1941 theory (K41)

The paper in which Kolmogorov (1941b) presents the theory is only one half page
long and the idea is very simple. It is presented thoroughly by Landau and Lifshitz
(1987). Here we will go through it briefly. Kolmogorov imagined a flow initiated
by vigorous stirring and then left alone to slowly dampen out by viscosity. This
case of unforced flow is today called decaying turbulence. The flow is assumed to
be homogeneous (translationally invariant in the mean) and isotropic (rotationally
invariant in the mean). The picture we have in mind here is a flow maintained
by a force active on large scales of the flow, such that the flow is in a state of
statistical equilibrium in the sense that on average the energy input by the force is
balanced by the energy dissipated by viscosity (heating the fluid). The state of the
flow is then characterized by the mean energy dissipation per unit of mass € due
to viscosity. The velocity characteristic of a given length scale / < L is the typical
velocity difference du(l) = |u(r+1) —u(r)|, where for clarity we suppress all vector
indices. This velocity difference is characteristic of the velocity associated with an
eddy of size . The effect of the larger scale flow velocity is merely to move, or
sweep, the eddy through the flow as a rigid body. Likewise, if we consider a much
smaller eddy within the larger eddy, the effect of the larger eddy on the smaller is the
same as the effect of the larger scale flow on the large eddy. Since there is nothing
physically significant about a given length scale / in the flow we assume the flow
to be self-similar in the sense that when /| < [» < L the velocity differences are
related by du(lr) =f (l1/1x)8u(ly), where f is some universal function. This implies
that the velocity difference du(/) can only be a function of the scale / and the mean
energy dissipation €. From dimensional counting the only possible relationship
is

su(l) ~ D3, (1.8)

where ~ means proportionality. The eddy turnover time is the typical timescale
for a fluid parcel propagating across the size of the eddy with the typical velocity
associated with that eddy.

We use these kinds of dimensional argument throughout this book. The scal-
ing relation (1.8) is obtained from the fact that only quantities of the same
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dimension can be compared. So if we want to establish a functional relation-
ship
su(l) =£(1,8), (1.9)
the dimension of the right hand side must be the same as the dimension of
the left hand side. Furthermore, the numerical value of the quantity on the left
hand side cannot depend on change of units of the quantities on the right hand
side which leave the units on the left hand side unchanged. If, for example, we
measure length in millimeters and time in milliseconds instead of metres and
seconds, the numerical value of velocity is unchanged. However, the numer-
ical values of / and g change. If (1.9) is to hold regardless of the change
of units, f can only depend on the combination of / and £ which has the
same dimension as the left hand side. The dimensions are [du] =m/s, [/] = m,
[e] = m2/s3, so for [du] = [l]"’[E]/S we get, B = a = 1/3. From this we get
Su(l) =f[(g1)'/3). By changing the units of velocity, say scaling length by a factor
A, we get
Asu(ly =AM [EDVP1=FIAED3). (1.10)

Thus we see that f must be a linear function and we obtain (1.8).

The relation (1.8) contains all the essentials of the K41 theory. The scale 7 at
which the dissipation becomes important is called the Kolmogorov, or inner scale,
in contrast to L, the outer, or integral scale. From (1.1) we can get an estimate of
the rate of change of the energy per unit volume due to dissipation at the scale 7,
& ~ vu;dju; ~ véu(n)?/n>. Using (1.8) we get

n~@E/)14 (1.11)

So keeping the integral length scale velocity and the mean energy dissi-
pation £ fixed, the Kolmogorov scale depends on the Reynolds number as
n~ Re /4,

The mean of the square of the velocity difference is called the second order
structure function S> (/). The scaling of S»(/) is obtained by simply squaring (1.8):

Sa(l) = (su(l)?) ~ )3, (1.12)

The mean (.) denotes an ensemble average, defined as the average over many
realizations of the flow with different initial conditions (drawn from some dis-
tribution). Assuming ergodicity, this could as well be a temporal average (in a
given set of points), or a spatial average in the case of homogeneity. We will
freely assume these three to be equal or use either at our convenience with-
out dwelling more on subtleties regarding the assumption of ergodicity or the
distribution of initial conditions. A rigorous discussion can be found in Frisch
(1995).



