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Preface

My intention in writing this book is to bring into one place the basics of
invariant descriptive set theory, also known as the descriptive set theory of
definable equivalence relations. Invariant descriptive set theory has been an
active field of research for about 20 years. Many researchers and students
are impressed by its fast development and its relevance to other fields of
mathematics, and would like to be better acquainted with the theory. I have
tried to make this book as self-contained as possible, and at the same time
covered what I believe to be the essential concepts, methods, and results.

The book is designed as a graduate text suitable for a year-long course. I
have kept the sections short so that they can be used as lecture notes, and
most of the sections are followed by a number of exercise problems. Many
exercises are propositions and even theorems needed later in the book. So the
student is urged to make a serious effort to work them out.

Ideally, the student should have some experience with classical and effec-
tive descriptive set theory before reading this book. But since this is most
likely not the case, I have only assumed that the student knows some general
topology. In the first chapter a review of classical and effective descriptive
set theory is given, and throughout the book results are recalled as they be-
come necessary. I can imagine that it is hard, but possible, for a student
who has never seen any descriptive set theory to get started on the subject,
but I believe that, with patience and diligence, the obstacles will be overcome
eventually.

I have to remark, primarily for the experts in the field, that the book is not
intended to be a comprehensive account of all aspects of invariant. descriptive
set theory. A reader who is familiar with the materials of the book and who
is interested in further developments should have no problem following the
current, literature on many topics and applications. The selection of topics
contained in this book was greatly influenced by the book of Becker and
Kechris [8] and some unpublished notes of Kechris.

I would like to thank Julia Knight for inviting me to give a short course on
invariant descriptive set theory at the University of Notre Dame in 2005. The
first ideas for this book came from the notes for that short course. I would also
like to thank the participants of the short course for typing the notes and for
conversations on the topic. I am grateful to Dave Marker and Peter Cholak
for the encouragement to write a graduate textbook on the subject. Special
thanks are due to Longyun Ding and Vincent Kieftenbeld for comments and
suggestions on the manuscript.

xiii



Xiv Preface

I would like to acknowledge the financial support of the National Science
Foundation and the University of North Texas for the composition of this
book and for related research. It would be impossible for me to write this
book without the faculty developmental leave granted by the University of
North Texas. Many thanks to all at CRC/Taylor & Francis for their untiring
work to make this book a reality.

I am indebted to Greg Hjorth for leading me into the field and to Alekos
Kechris for many years of advice and support. It is a privilege for me to
be acquainted with many colleagues and experts in the field, too numerous
to list (see the References and Index), whose research results shaped this
book. I benefited a great deal from communications with them and from their
contributions to the literature. I present this book to them with gratitude and
pride.

Su Gao
Denton, Texas
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Polish Group Actions






Chapter 1

Preliminaries

This chapter reviews the concepts and results of classical and effective de-
scriptive set. theory that will be used in this book. Classical descriptive set
theory was founded by Baire, Borel, Lebesgue, Luzin, Suslin, Sierpinski, and
others in the first two decades of the twentieth century. The theory studies
the descriptive complezity of sets of real numbers arising in ordinary mathe-
matics, mostly in topology and analysis. The most striking achievements of
this theory are the proofs of regularity properties of low-level definable sets
of reals.

Effective descriptive set theory was created later in the century by intro-
ducing into the classical theory the new and powerful tools developed from
recursion theory (now called computability theory). Computability theory
came about from completely different motivations and was invented by an-
other group of great minds such as Godel, Church, Turing, Kleene, and oth-
ers. It provided a framework to understand the structural and computational
complexity of sets and functions (mostly pertaining to natural numbers). The
classical theory is much better understood from the perspective of the effective
theory.

In this chapter we review the basic concepts and results of both classical
and effective theory that are relevant to the remainder of the book. Readers
unfamiliar with these topics should be able to get a working idea about the
content and the flavor of the theory by reading this chapter alone, and es-
pecially if they are diligent enough to work out the exercise problems in this
chapter. Later in the book there will be more specific concepts and results
being reviewed as they become necessary tools. In addition, some proofs are
given in the appendix. The reader can probably get by with these reviews
without ever systematically studying the classical and effective descriptive
set theory, but an understanding of the comprehensive theory will be hugely
advantageous.

For a complete treatment of these topics the reader can consult the standard
references. For classical descriptive set theory the standard textbook is [97]

A. S. Kechris, Classical Descriptive Set Theory. Graduate Texts
in Mathematics 156. Springer-Verlag, New York, 1995.

And for effective descriptive set theory our standard source is [126]

Y. N. Moschovakis, Descriptive Set Theory. Studies in Logic and
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Foundations of Mathematics 100. North-Holland, Amsterdam,
New York, 1980.

In addition, there are more concise treatments of the subject which provide
efficient inroads to the theory and can be used as alternatives for or in con-
junction with the standard texts: [148] by Srivastava, [125] by Martin and
Kechris, [116] by Mansfield and Weitkamp, and [133] by Sacks. Thus in this
chapter our review will be pragmatic and sketchy. Many facts, even theorems,
are given without proof. Also we have left out important aspects of the theory
just to get the reader quickly prepared to deal with the main topics of the
book starting in Chapter 2.
Let the story begin.

1.1 Polish spaces

Definition 1.1.1
A topological space is Polish if it is separable and completely metrizable.

Some basic properties of Polish spaces are gathered in the following propo-
sition.

Proposition 1.1.2
(a) Any Polish space is second countable and normal.

(b) Any Polish space is Baire. (Recall that a topological space is Baire if
the intersection of countable many dense open sets is dense.)

(¢) A finite or countable product of Polish spaces is Polish.

(d) A subspaceY of a Polish space X is Polish iff Y is G5 in X, that is, Y

is the intersection of countably many open sets in X.
(e) A quotient space of a Polish space is not necessarily Polish.

Clause (b) in the proposition is a direct consequence of the Baire category
theorem, which says that a complete metric space is Baire. Examples of Pol-
ish spaces are abundant in mathematics. Some of the most familiar examples
are listed below.

Example 1.1.3
(1) All countable spaces with the discrete topology are Polish. These include



(e}

Preliminaries
the following spaces:
N=w=1{0,1,2,...},
Ny =N-{0} ={1,2,...},
Z={...,-2,-1,0,1,2,...}.
Throughout this book we use N and w interchangeably.

(2) R™ with the usual topology for 1 < n < w are Polish.

(3) The Baire space N' = w* is Polish. A complete metric on N is defined
by

d(z, ) = 0, ifr =y,
Y= 271 if n € w is the least such that z(n) # y(n).

(4) The Cantor space 2¢ is a closed subspace of A, hence is Polish.

(5) All separable Banach spaces, such as ¢y and ¢, (1 < p < 00), are Polish.
Note that 7, is not separable and therefore not a Polish space.

(6) All compact metrizable spaces are Polish (see Exercise 1.1.1).

Some nontrivial examples of Polish spaces involve hyperspaces of sets or
functions. We examine two such examples below.

Let d be a compatible metric on a Polish space X. Then we can define a
compatible metric d’ on X with the property that d’ < 1 as follows:

d(r,y)

1/ T =3 3 N
d'(z,y) 1 +d(x,y)

Moreover, if d is complete then so is d’. If z € X and A C X, then we denote
d(z,A) = d(A,z) = inf{d(z,y) : y€ A}.

Let X be a Polish space. Let K (X) denote the space of all compact subsets
of X equipped with the Vietoris topology generated by subbasic open sets
of the following form:

{Ke K(X): KCU}, or

(Ke K(X): KnU # 0},

for U open in X. Then K(X) is Polish. An explicit compatible metric on
K(X) is known as the Hausdorff metric. To define it, let d be a compatible



