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EFFECTS OF RADIATION ON SEMICONDUC TORS
DEISTVIE IZLUCHENII NA POLUPROVODNIKI
IEVCTBVE VBJIVUEHNA HA TIONYIIPOBOLHUKHI



PREFACE

The effects of electromagnetic radiation and high-energy par-
ticles on semiconductors can be divided into two main processes:
(a) the excitation of electrons (the special case is internal ioniza-
tion, i.e., the generation of excess charge carriers); and(b) dis-
turbance of the periodic structure of the crystal, i.e., the forma-
tion of "structural radiation defects." Naturally, investigations
of the effects of radiation on semiconductors cannot be considered
in isolation. Thus, for example, the problem of "radiation de-
fects" is part of the general problem of crystal lattice defects and
the influence of such defects on the processes occurring in semi-
conductors. The same is true of photoelectric and similar phe-
nomena where the action of the radiation is only the start of a
complex chain of nonequilibrium electron processes. Nevertheless,
particularly from the point of view of the experimental physicist,
the radiation effects discussed in the present book have inter-
esting features: several types of radiation may produce the
same result (for example, ionization by photons and by charged
particles) or one type of radiation may produce several effects
(ionization and radiation —defect formation).

The aim of the author was to consider the most typical prob-
lems. The subjects discussed differ widely from one another in
the extent to which they have been investigated. An example of a
relatively intensively investigated problem is the absorption of
infrared radiation by semiconductors — extensive experimental
data being available at least for some substances, and theoretical
interpretations being available for the majority of cases. An ex-
ample of an important but neglected problem is the formation and
physical nature of the radiation defects in semiconductors. The
results of the studies of radiation effects in semiconductors are
not only of scientific value but are also essential to the successful
solution of several important practical problems, such as:

a. the direct conversion of solar and nuclear radiation energy
into electrical power;
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b. the recording of weak infrared radiation fluxes;

c. the design of new electromagnetic radiation sources
(masers and lasers) using semiconductors;

d. the counting and determination of the energy and total flux
of fast particles and gamma-ray quanta;

e. the application of semiconductor electronics to nuclear
power.

The solution of each of these problems necessarily involves
subjects far removed from the physics of semiconductors. In re-
cent years, several monographs and reviews of Soviet and foreign
authors, presenting the advances made toward the solution of these
problems, have appeared in the USSR [1-9].

The contents of the present book reflect to a considerable ex-
tent the interests of a team of workers studying the effects of ra-
diation on semiconductors at the P. N. Lebedev Physics Institute
of the USSR Academy of Sciences and the author's experience of
lecturing to the senior students of the physics faculty of the M. V.
Lomonosov Moscow State University.

The author is deeply grateful to B. M. Vul, Corresponding
Member of the USSR Academy of Sciences, for his interest in the
work on the effects of radiation on semiconductors and for his
numerous valuable comments. The author is also very gratefu.
to V. S. Vinogradov, A. A. Gippius, V. D. Egorov, and S. M.
Ryvkin for their criticism of and comments on the book when in
manuscript.
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Chapter I

ABSORPTION OF LIGHT BY SEMICONDUCTORS

§1. Optical Constants of Semiconductors
and Methods of Determining Them

The absorption of light * by semiconductors anddielectric crys-
tals may be accompanied by photoionization, i.e., the generation
of excess densities of electrons and holes in the conduction and
valence bands, and by electron transitions to excited states. It
may also be accompanied by other processes (the excitation of
lattice vibrations, interband electron transitions, etc.), but from
the point of view of the problems to be discussed later, it is the
former processes, especially photoionization, that are particular-
ly interesting.

Electrons in a crystal may be divided into the following groups
depending on the nature of their interaction with electromagnetic
radiation:

a, electrons in the valence band;

b. charge carriers (electrons in the conduction band and
holes in the valence band);

c. electrons localized at defect or impurity levels;

d. electrons of the inner shells of atoms.

The optical properties of a material are represented by the
refractive index n and the absorption index ®, which is also known
as the extinction coefficient. We shall restrict ourselves to a dis-
cussion of nonmagnetic isotropic media whose permittivity € and
conductivity o are scalars. The value of € is found from the ex-
pression

e=n?—x2=1-44my. (1.1)
The susceptibility X is related to polarization. Usually,

*Here, the term "light” represents electromagnetic radiation over a wide range of
wavelengths.
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e~n? since nZ>«% 1.2)

The conductivity o, which governs the
absorption of energy, is given by the
formula

6= nw, (1.3)

where v is the frequency.*

The experimentally determined
absorption coefficient @ is related to
the absorption index n by the expres-
sion

% = 4mx % = 4wy, (1.4)
Fig. 1. Measurement of optical

transmission in a sample with where v = V/C is the wave number in

plane surfaces. 1) Monochro- cm-i,

mator slit; 2) spherical mirror; Data on the optical constants n,
3) plane mirror; 4) sample; 5) @, and k are obtained by investigat-
elliptical mirror; 6) radiation ing the transmission of light by the

recelver. test material, or its reflectivity R. A

simple method for making optical
measurements on samples of crystals with polished surfaces is
shown in Fig. 1. The measured quantity is the transmission T
=1/ I;, i.e., the ratio of the intensities of the incident I, and trans-
mitted Ilightbeams. For monochromatic radiation of wavelength A

T:ILZ — \L—RP S-AR iy . 1.5)
o e + R%e™™ —2R cos2(p+ )

where d is the sample's thickness, and the values of the angles
@ and ¥ are given by the formulas:

4nnd " 2%
p=—x V= mragT

The term 2R cos 2(¢ + ¥) represents the interference in a plate-
shaped sample. The formula (1.5) also allows for multiple re-
flection from the surfaces. If we use samples of sufficient thick-
ness or light covering a wide range of the spectrum AA, we can
avoid interference and use the simple formula

® The conductivity o depends on the optical frequency v and, in general, it is not
equal to the conductivity o, at zero or low frequencies.
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r—d __(—=Ry 1.6)

IO - ead_RZe-nzd *
The above formula allows for multiple internal reflections, which
are important when the transparency and reflectivity are high.
The reflectivity of a clean surface, R, for normal incidence is
given by the formula

—1)2 42

Under real conditions, the reflectivity may depend strongly on the
state of the surface, in particular on the presence of thin oxide
films. To determine the value of @, it is convenient to eliminate
R by carrying out measurements on samples of different thickness
but having the surface treated in the same way. The value of n
may be obtained from measurements of the reflectivity or of the
interference in thin plates [2].

When the absorption of light by crystals is sufficiently weak,
the value of the refractive index, which really represents the
volume properties, is found by shaping a given material into a
prism and measuring the deviation of a light beam which passes
through it [3].

Table 1 gives values of n and € for elements of group IV of
Mendeleev's table and some intermetallic compounds of the A3Bg
type.

It follows from Eq. (1.7) that in the absence of absorp-
tion the transmission of a plane-parallel plate is governed by the
value of n.

§2. "'Intrinsic' Optical Absorption Band
(Fundamental Band)

The existence in all semiconductors of a wide spectral re-
gion of very intense absorption, limited on the long-wavelength
side by a sharp edge, is due to the fact that the absorption of
photons of sufficiently high energy is accompanied by electron
transitions from the valence to the conduction band.

In the case of covalent crystals or crystals with weak ionic
binding, light of frequency v < (Eg/h),where Eg is the "thermal"
width of the forbidden band (gap), passes through pure crystals
without causing photoionization.
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TABLE 1. Refractive Indices n and Permittivities
¢ of Some Semiconductors

Substance n € Substance n €

Diamond | 2.417 5.9 InSb 3.988* 15.9
Si 3.446 11.8 GaP 2.97F 8.4
Ge 4,006* 16.0 GaAs 3.348e* 11.1
InP 3.37t 10.9 GaSb 3.748e 14,0
InAs 3.428e 11.7 AlSb | 3.188+ 10.1

¢ Prism method.
t Reflection data [4].

The readily observed increase in the absorption coefficient
for photons of energies hv > Eg allows us to estimate the value
of the forbidden bandwidth. The nature of the absorption increase
with increasing photon energy, i.e., the shape of the absorption
band edge, is governed by the electron energy-band structure of
the semiconductor. Absorption processes competing with the "in-
trinsic" absorption and the difficulty of determining exactly small
values of @ (beginning with fractions of 1 cm-! or less) usually
prevent us from obtaining very exact values of Eg from the data
on the absorption of light by crystals. On the other hand, an ap-
proximate value of Eg obtained by this method is reliable and the
method itself is valuable, because of its simplicity, in the initial
studies of new semiconducting materials (an accurate optical meth-
od for determining Eg from the fine structure of the recombina-
tion radiation spectra will be described later, in Chapt. IV).

It is known that in ionic crystals the thermal and optical for-
bidden bandwidths are different. The optical excitation energy
in these crystals is found to be greater than the thermal excita-
tion energy [5]. This condition can be explained qualitatively
using the Franck-Condon principle, according to which the ex-
cess energy of a system which has absorbed a photon is trans-
formed into the energy of lattice vibrations, in a time considerably
longer than the duration of the act of absorption.

The expression for the absorption coefficient, corresponding
to an electron transition from a state i in the valence band to a
state f in the conduction band without phonon participation, has
the form

a= | Py PN (), @.8)
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where c¢ is a constant representing the medium, and N(hv) is the
density distribution of the final states over an interval of unit en-
ergy. The matrix element representing transitions of this type
is

Pi/:—ibfq»;ek grad ¢, dr, 1.9)

where e is the polarization vector of radiation with the wave vec-
tor k; i =J—1. Following Bloch, we can write the wave functions
of electrons in the following form:

q)kn = e'kr Ukn (f), (1 . 10)

where Uy, are periodic functions with the same period as the lat-
tice, we find that Pif vanishes at any point where the following se-
lection rule is not satisfied

k+-k=Fk, 1L.11)

Since the wave vectors of an electron in its initial and final states
are much greater than the wave vector of a photon, the above selec-
tion rule can be expressed also as

ko~ k. (1.12)

Thus, in agreement with the law of conservation of momentum,
only the "vertical"” transitions without any change in the wave vec-
tor are allowed.

A careful study of the fundamental band edge of germanium
single crystals, carried out on samples whose thickness was in
some cases a fraction of a micron, allowed us to detect the struc-
ture shown in Fig. 2 [6]. By the time these experimental results
were obtained, it had been shown — by the cyclotron resonance
method — that the bottom of the conduction band in germanium
crystals did not correspond to the electron wave vector k = 0. The
band structure of germanium was calculated theoretically by Her-
man, whose results are shown schematically in Fig. 3 [7]. In
accordance with the above selection rule and Herman's data, the
energy threshold for the vertical transitions should correspond to
the frequency

VR -
V=g (E.—E,)
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Fig. 2. Edge of the fundamental optical
absorption band of germanium and silicon
single crystals at 300°K [1].
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Fig. 3. Energy-band structure of a ger-
manium crystal: v valence band; c con-
duction band. The complex structure of
the valence band is not shown.

which is considerably higher
than

E 1
V=Tg="7(Et—E.y).

However, it is evident
from the experimental curve
(Fig. 2) that the absorption
of a pure germanium single
crystal increases strongly
at v ® Eg/h. To explain
this fact, J. Bardeen, F. J.
Blatt, and L. H. Hall [8]
suggest that in the region of
photon energies insufficient
for vertical transitions, elec-
tron transitions to the con-
duction band still occur be-
cause the selection rule of
Eq. (1.12), which should
be strictly obeyed in an ideal
periodic crystal, is relaxed
due to the interaction of elec-
trons with phonons.

Returning to the energy-
band structure of Fig. 3, we
must follow Herman [7] in
assuming that an electron is
excited optically from a state
i to ¢' and is then trans-
ferred from c' to f emitting
or absorbing a phonon. As
a result of this, the electron
wave vector changes con-
siderably and the whole pro-

cess can be considered as a "nonvertical" transition from i to f
with the absorption of a photon hyv Eg.

Since each of the processes shown in Fig. 3 may involve the
emission or absorption of a phonon, the matrix element which
gives the transition probability becomes



