EFFECTS OF RADIATION ON SEMICONDUCTORS ## by Viktor Sergeevich Vavilov Translated from Russian by A. Tybulewicz Editor, Physics Abstracts and Current Papers in Physics, London First Printing-January 1965 Second Printing-February 1967 The Russian text was published by the State Press for Physical and Mathematical Literature, Fizmatgiz, in Moscow in 1963. Вавилов Виктор Сергеевич «Действие излучений на полупроводники» Library of Congress Catalog Card Number 64-23245 © 1965 Consultants Bureau Enterprises, Inc. 227 West 17th St., New York, N.Y. 10011 All rights reserved No part of this publication may be reproduced in any form without written permission from the publisher Printed in the United States of America ## EFFECTS OF RADIATION ON SEMICONDUCTORS DEISTVIE IZLUCHENII NA POLUPROVODNIKI ДЕЙСТВИЕ ИЗЛУЧЕНИЙ НА ПОЛУПРОВОДНИКИ #### PREFACE The effects of electromagnetic radiation and high-energy particles on semiconductors can be divided into two main processes: (a) the excitation of electrons (the special case is internal ionization, i.e., the generation of excess charge carriers); and(b) disturbance of the periodic structure of the crystal, i.e., the formation of "structural radiation defects." Naturally, investigations of the effects of radiation on semiconductors cannot be considered in isolation. Thus, for example, the problem of "radiation defects" is part of the general problem of crystal lattice defects and the influence of such defects on the processes occurring in semiconductors. The same is true of photoelectric and similar phenomena where the action of the radiation is only the start of a complex chain of nonequilibrium electron processes. Nevertheless, particularly from the point of view of the experimental physicist. the radiation effects discussed in the present book have interesting features: several types of radiation may produce the same result (for example, ionization by photons and by charged particles) or one type of radiation may produce several effects (ionization and radiation-defect formation). The aim of the author was to consider the most typical problems. The subjects discussed differ widely from one another in the extent to which they have been investigated. An example of a relatively intensively investigated problem is the absorption of infrared radiation by semiconductors — extensive experimental data being available at least for some substances, and theoretical interpretations being available for the majority of cases. An example of an important but neglected problem is the formation and physical nature of the radiation defects in semiconductors. The results of the studies of radiation effects in semiconductors are not only of scientific value but are also essential to the successful solution of several important practical problems, such as: a. the direct conversion of solar and nuclear radiation energy into electrical power; vi PREFACE - b. the recording of weak infrared radiation fluxes; - c. the design of new electromagnetic radiation sources (masers and lasers) using semiconductors; - d. the counting and determination of the energy and total flux of fast particles and gamma-ray quanta; - $\ensuremath{\text{e}}\xspace$ the application of semiconductor electronics to nuclear power. The solution of each of these problems necessarily involves subjects far removed from the physics of semiconductors. In recent years, several monographs and reviews of Soviet and foreign authors, presenting the advances made toward the solution of these problems, have appeared in the USSR [1-9]. The contents of the present book reflect to a considerable extent the interests of a team of workers studying the effects of radiation on semiconductors at the P. N. Lebedev Physics Institute of the USSR Academy of Sciences and the author's experience of lecturing to the senior students of the physics faculty of the M. V. Lomonosov Moscow State University. The author is deeply grateful to B. M. Vul, Corresponding Member of the USSR Academy of Sciences, for his interest in the work on the effects of radiation on semiconductors and for his numerous valuable comments. The author is also very grateful to V. S. Vinogradov, A. A. Gippius, V. D. Egorov, and S. M. Ryvkin for their criticism of and comments on the book when in manuscript. #### CONTENTS ## Chapter I | | ABSORPTION OF LIGHT BY SEMICONDUCTORS | | |------|--|----| | §1. | Optical Constants of Semiconductors and Methods | | | | of Determining Them | 1 | | §2. | "Intrinsic" Optical Absorption Band (Fundamental | | | | Band) | 3 | | §3. | Effect of Temperature, Pressure, Electric and | | | | Magnetic Fields on Optical Absorption in the Fun- | | | | damental Band | 13 | | | A. Effect of Temperature and Pressure | 13 | | | B. Effect of an Electric Field on the Edge of the | | | | Fundamental Optical Absorption Band | 16 | | | C. Effect of a Magnetic Field on the Fundamental | | | | Absorption Band | 19 | | §4. | Absorption of Light Accompanied by Exciton For- | | | | mation | 21 | | § 5. | Absorption of Light Involving the Photoionization | | | | or Excitation of Impurities and Structural Defects. | 24 | | | A. Centers with Shallow Energy Levels | 24 | | | B. Infrared Absorption Related to the Deep Levels | | | | of Impurities and Defects | 29 | | §6. | Infrared Absorption by Charge Carriers | 30 | | | A. Nonselective Absorption | 30 | | | B. Selective Absorption | 35 | | §7. | Influence of Electrically Inactive Impurities on the | | | | Infrared Absorption in Semiconductors | 36 | | §8. | Absorption of Light Involving Excitation of Crystal | | | | Lattice Vibrations | 38 | viii CONTENTS ### Chapter II ## PHOTOIONIZATION AND PHOTOCONDUCTIVITY IN SEMICONDUCTORS | 89. | Principal Quantities and Relationships in Photo- | | |------|---|-------| | | conductivity | 41 | | §10. | Photoionization Quantum Yield and Its Spectral | | | | Dependence | 46 | | | A. Concept of the Quantum Yield and Its Deter- | | | | mination from the Photocurrent in Homo- | | | | geneous Crystals | 46 | | | B. Determination of the Photoionization Quantum | | | | Yield in Semiconducting Crystals with p-n | | | | Junctions | 50 | | | C. Results of Studies of the Spectral Dependence | | | | of the Photoionization Quantum Yield | 55 | | | D. Discussion and Interpretation of Data on the | | | | Spectral Dependence of the Photoionization | | | | Quantum Yield | 59 | | §11. | Ionization by Absorption of High-Energy Photons | | | | (X Rays and Gamma Rays) | 61 | | §12. | Recombination and Capture of Electrons and Holes | | | | in Semiconductors | 63 | | | A. Recombination Capture of Carriers by Local | | | | Centers | 66 | | | B. Statistics of Recombination Processes for Cen- | | | | ters with One Level | 68 | | | C. A Typical Recombination Process at Local Cen- | | | | ters: Chemical Impurities in Germanium | | | | Crystals | 72 | | | D. Recombination of Nonequilibrium Carriers in | | | | Silicon and Indium Antimonide | 74 | | | E. Processes Connected with the Capture (Trap- | | | | ping) of Carriers | 75 | | | F. Recombination and Capture of Carriers by Sur- | | | | face Centers in Semiconductors | 79 | | §13. | Dependence of the Photoconductivity on the Excita- | | | | tion Intensity. Quenching of the Photoconductivity. | 52000 | | | Negative Photoconductivity | 80 | | | A. Sensitization of Photoactive Semiconductors | 84 | | | B. Superlinearity | 86 | | CONTENTS | ix | |----------|----| | | | Quenching of Photoconductivity | 87
88 | |--------------|---|---|----------| | | | Chapter III | | | | | IONIZATION OF SEMICONDUCTORS BY CHARGED HIGH-ENERGY PARTICLES | | | §14.
§15. | Part | re of the Interaction of Charged High-Energy icles with Matter. Ionization Energy Losses. | 90 | | 210. | of Fo | ormation of a Nonequilibrium Carrier Pair in | | | | 120000000000000000000000000000000000000 | conductors | 95 | | | | Germanium | 96 | | | | Silicon | 104 | | §16. | | Beta-Particle Ionization of Diamond ussion of Experimental Data and a Theoretical | 105 | | | | pretation | 106 | | | | Chapter IV | | | Р | | ATIVE RECOMBINATION IN SEMICONDUCTORS;
ILITY OF THE AMPLIFICATION AND GENERAT
OF LIGHT USING SEMICONDUCTORS | | | §17. | Theo | ry of Recombination of Electrons and Holes | | | | Acco | mpanied by Photon Emission | 112 | | §18. | | rimental Methods of Exciting and Investigating | | | | | mbination Radiation Spectra | 117 | | §19. | | mbination Radiation Spectra of Germanium | 119 | | | | 'Intrinsic" Radiation | 119 | | | | mpurity Radiation of Germanium | 125 | | §20. | | ative Recombination in Silicon | 127 | | §21. | | ative Recombination in Semiconducting Com- | | | | | ds (InSb, GaSb, InP, PbS) | 130 | | §22. | | ibility of Producing Population Inversion | | | | | ative Temperatures) in Semiconductors. Am- | | | | - | cation and Generation of Coherent Radiation | 132 | | | | Population Inversion Concept | 133 | | | | Feasibility of Producing Population Inversion | 136 | | | C. | DECEMBER OF STREET | 1.00 | x CONTENTS #### Chapter V ## CHANGES IN THE PROPERTIES OF SEMICONDUCTORS DUE TO BOMBARDMENT WITH FAST ELECTRONS, GAMMA RAYS, NEUTRONS, AND HEAVY CHARGED PARTICLES Part A. Theoretical Interpretations of the Process of Radiation-Defect Formation | §23. | Effects of Fast Electrons and Gamma Rays | 141 | |-------------|--|-------------| | | A. Initial Assumptions | 141 | | | B. Angular and Energy Distribution of Atoms after | | | | Electron Scattering | 143 | | | C. Probability of the Formation of Frenkel | | | | Defects | 146 | | § 24. | Improved Theory of the Displacement of an Atom | | | | from Its Site to an Interstice in a Diamond-Type | | | | Crystal Lattice (Germanium) | 15 0 | | §25. | Formation of Radiation Defects by Gamma Rays | 153 | | §26. | Effects of Fast Neutrons and Heavy Charged Par- | | | | ticles | 154 | | | A. Energy of Recoil Nuclei | 154 | | | B. Formation of Secondary Structural Defects as a | | | | Result of Elastic Collision Cascades | 157 | | | C. Collisions Involving the Displacement of De- | | | | fects | 162 | | | D. Thermal Theory of the Formation of Radiation | | | | Defect Aggregates | 164 | | | Part B. Radiation Defects and the Effects of Nuclear | | | | Reactions in Semiconductors (Experimental Data) | | | §27. | Purpose and Methods of Investigating Radiation | | | | Defects in Semiconductors | 166 | | §28. | Radiation Defects in Silicon Single Crystals | 169 | | | A. Threshold of Radiation-Defect Formation | 170 | | | B. Influence of Radiation Defects on the Equilibri- | | | | um Carrier Density | 173 | | | C. Infrared Absorption and Photoconductivity As- | | | | sociated with Radiation Defects in Silicon | 179 | | | D. Influence of Radiation Defects on the Recom- | | | | bination of Nonequilibrium Carriers in Silicon. | 183 | | | | | CONTENTS xi | §29. | Radiation Defects in Germanium Single Crystals | 189 | |--------|--|-----| | | A. Dependence of the Probability of Radiation- | | | | Defect Formation on the Energy Transferred | | | | to Atoms during Electron Bombardment | 190 | | | B. Energy Levels of Radiation Defects in Ger- | | | | manium and the Influence of Defects on the Re- | | | | combination of Nonequilibrium Carriers | 192 | | §30. | Radiation Defects in Semiconducting Compounds | 196 | | § 31. | Annealing of Radiation Defects in Semiconductors . | 199 | | §32. | Effects of Nuclear Reactions in Semiconductors | 205 | | Litera | ture Cited | 209 | | | | 221 | #### Chapter I #### ABSORPTION OF LIGHT BY SEMICONDUCTORS ## § 1. Optical Constants of Semiconductors and Methods of Determining Them The absorption of light* by semiconductors and dielectric crystals may be accompanied by photoionization, i.e., the generation of excess densities of electrons and holes in the conduction and valence bands, and by electron transitions to excited states. It may also be accompanied by other processes (the excitation of lattice vibrations, interband electron transitions, etc.), but from the point of view of the problems to be discussed later, it is the former processes, especially photoionization, that are particularly interesting. Electrons in a crystal may be divided into the following groups depending on the nature of their interaction with electromagnetic radiation: - a. electrons in the valence band; - b. charge carriers (electrons in the conduction band and holes in the valence band): - c. electrons localized at defect or impurity levels; - d. electrons of the inner shells of atoms. The optical properties of a material are represented by the refractive index n and the absorption index \varkappa , which is also known as the extinction coefficient. We shall restrict ourselves to a discussion of nonmagnetic isotropic media whose permittivity ϵ and conductivity σ are scalars. The value of ϵ is found from the expression $$\varepsilon = n^2 - x^2 = 1 + 4\pi\chi.$$ (1.1) The susceptibility χ is related to polarization. Usually, [•] Here, the term "light" represents electromagnetic radiation over a wide range of wavelengths. Fig. 1. Measurement of optical transmission in a sample with plane surfaces. 1) Monochromator slit; 2) spherical mirror; 3) plane mirror; 4) sample; 5) elliptical mirror; 6) radiation receiver. $$\varepsilon \approx n^2$$, since $n^2 \gg x^2$. (1.2) The conductivity σ , which governs the absorption of energy, is given by the formula $$\sigma = n \times v, \qquad (1.3)$$ where ν is the frequency.* The experimentally determined absorption coefficient α is related to the absorption index x by the expression $$x = 4\pi x \frac{v}{c} = 4\pi x \overline{v}, \qquad (1.4)$$ where $\overline{\nu} = \nu/c$ is the wave number in cm⁻¹. Data on the optical constants n, α , and κ are obtained by investigating the transmission of light by the test material, or its reflectivity R. A simple method for making optical measurements on samples of crystals with polished surfaces is shown in Fig. 1. The measured quantity is the transmission T = I/I_0 , i.e., the ratio of the intensities of the incident I_0 and transmitted I light beams. For monochromatic radiation of wavelength λ ABSORPTION OF LIGHT BY SEMICONDUCTORS $$T = \frac{I}{I_0} = \frac{(1 - R)^2 + 4R \sin^2 \psi}{e^{ad} + R^2 e^{-ad} - 2R \cos 2(\varphi + \psi)},$$ (1.5) where d is the sample's thickness, and the values of the angles φ and ψ are given by the formulas: $$\phi = \frac{4\pi nd}{\lambda}, \quad \psi = \tan^{-1} \frac{2\kappa}{n^2 + \kappa^2 + 1}.$$ The term $2R\cos 2(\varphi + \psi)$ represents the interference in a plateshaped sample. The formula (1.5) also allows for multiple reflection from the surfaces. If we use samples of sufficient thickness or light covering a wide range of the spectrum $\Delta\lambda$, we can avoid interference and use the simple formula ullet The conductivity σ depends on the optical frequency u and, in general, it is not equal to the conductivity σ_0 at zero or low frequencies. $$T = \frac{I}{I_0} = \frac{(1-R)^2}{e^{ad} - R^2 e^{-ad}}.$$ (1.6) The above formula allows for multiple internal reflections, which are important when the transparency and reflectivity are high. The reflectivity of a clean surface, R, for normal incidence is given by the formula $$R = \frac{(n-1)^2 + x^2}{(n+1)^2 + x^2}.$$ (1.7) Under real conditions, the reflectivity may depend strongly on the state of the surface, in particular on the presence of thin oxide films. To determine the value of α , it is convenient to eliminate R by carrying out measurements on samples of different thickness but having the surface treated in the same way. The value of n may be obtained from measurements of the reflectivity or of the interference in thin plates [2]. When the absorption of light by crystals is sufficiently weak, the value of the refractive index, which really represents the volume properties, is found by shaping a given material into a prism and measuring the deviation of a light beam which passes through it [3]. Table 1 gives values of n and ϵ for elements of group IV of Mendeleev's table and some intermetallic compounds of the A_3B_5 type. It follows from Eq. (1.7) that in the absence of absorption the transmission of a plane-parallel plate is governed by the value of n. ## § 2. ''Intrinsic'' Optical Absorption Band (Fundamental Band) The existence in all semiconductors of a wide spectral region of very intense absorption, limited on the long-wavelength side by a sharp edge, is due to the fact that the absorption of photons of sufficiently high energy is accompanied by electron transitions from the valence to the conduction band. In the case of covalent crystals or crystals with weak ionic binding, light of frequency $\nu < (E_g/h)$, where E_g is the "thermal" width of the forbidden band (gap), passes through pure crystals without causing photoionization. | Substance | n | ε | Substance | n | ε | |-----------|---------|------|-----------|--------|------| | Diamond | 2.417 | 5.9 | InSb | 3.988• | 15.9 | | Si | 3.446 • | 11.8 | GaP | 2.97 | 8.4 | | Ge | 4.006 | 16.0 | GaAs | 3.348 | 11.1 | | InP | 3.37† | 10.9 | GaSb | 3.748 | 14.0 | | InAs | 3.428 | 11.7 | Alsb | 3.188 | 10.1 | TABLE 1. Refractive Indices n and Permittivities ε of Some Semiconductors 4 The readily observed increase in the absorption coefficient for photons of energies $h\nu\,>\,E_{\rm g}$ allows us to estimate the value of the forbidden bandwidth. The nature of the absorption increase with increasing photon energy, i.e., the shape of the absorption band edge, is governed by the electron energy-band structure of the semiconductor. Absorption processes competing with the "intrinsic" absorption and the difficulty of determining exactly small values of α (beginning with fractions of 1 cm⁻¹ or less) usually prevent us from obtaining very exact values of Eg from the data on the absorption of light by crystals. On the other hand, an approximate value of $E_{\mathbf{g}}$ obtained by this method is reliable and the method itself is valuable, because of its simplicity, in the initial studies of new semiconducting materials (an accurate optical method for determining \mathbf{E}_{g} from the fine structure of the recombination radiation spectra will be described later, in Chapt. IV). It is known that in ionic crystals the thermal and optical forbidden bandwidths are different. The optical excitation energy in these crystals is found to be greater than the thermal excitation energy [5]. This condition can be explained qualitatively using the Franck-Condon principle, according to which the excess energy of a system which has absorbed a photon is transformed into the energy of lattice vibrations, in a time considerably longer than the duration of the act of absorption. The expression for the absorption coefficient, corresponding to an electron transition from a state i in the valence band to a state f in the conduction band without phonon participation, has the form $$\alpha = \frac{c}{N} |P_{if}|^2 N(h^{\gamma}), \qquad (1.8)$$ Prism method. [†] Reflection data [4]. where c is a constant representing the medium, and $N(h\nu)$ is the density distribution of the final states over an interval of unit energy. The matrix element representing transitions of this type is $$P_{if} = -i\hbar \int \psi_f^* e_k \operatorname{grad} \psi_i \, d\tau, \qquad (1.9)$$ where \mathbf{e}_k is the polarization vector of radiation with the wave vector \mathbf{k} ; $\mathbf{i} = \sqrt{-1}$. Following Bloch, we can write the wave functions of electrons in the following form: $$\psi_{hn} = e^{i\mathbf{k}\mathbf{r}} U_{hn}(\mathbf{r}), \tag{1.10}$$ where U_{kn} are periodic functions with the same period as the lattice, we find that P_{if} vanishes at any point where the following selection rule is not satisfied $$\boldsymbol{k}_t + \boldsymbol{k} = \boldsymbol{k}_f. \tag{1.11}$$ Since the wave vectors of an electron in its initial and final states are much greater than the wave vector of a photon, the above selection rule can be expressed also as $$\mathbf{k}_i \approx \mathbf{k}_f.$$ (1.12) Thus, in agreement with the law of conservation of momentum, only the "vertical" transitions without any change in the wave vector are allowed. A careful study of the fundamental band edge of germanium single crystals, carried out on samples whose thickness was in some cases a fraction of a micron, allowed us to detect the structure shown in Fig. 2 [6]. By the time these experimental results were obtained, it had been shown — by the cyclotron resonance method — that the bottom of the conduction band in germanium crystals did not correspond to the electron wave vector $\mathbf{k} = 0$. The band structure of germanium was calculated theoretically by Herman, whose results are shown schematically in Fig. 3 [7]. In accordance with the above selection rule and Herman's data, the energy threshold for the vertical transitions should correspond to the frequency $$\mathbf{v}' = \frac{1}{h} \left(E_c' - E_v \right),$$ Fig. 2. Edge of the fundamental optical absorption band of germanium and silicon single crystals at 300°K [1]. Fig. 3. Energy-band structure of a germanium crystal: v valence band; c conduction band. The complex structure of the valence band is not shown. which is considerably higher than $$\mathbf{v} = \frac{E_{\mathbf{g}}}{h} = \frac{1}{h} (E_c - E_v).$$ However, it is evident from the experimental curve (Fig. 2) that the absorption of a pure germanium single crystal increases strongly at $\nu \approx E_g/h$. To explain this fact, J. Bardeen, F. J. Blatt, and L. H. Hall [8] suggest that in the region of photon energies insufficient for vertical transitions, electron transitions to the conduction band still occur because the selection rule of Eq. (1.12), which should be strictly obeyed in an ideal periodic crystal, is relaxed due to the interaction of electrons with phonons. Returning to the energy-band structure of Fig. 3, we must follow Herman [7] in assuming that an electron is excited optically from a state i to c' and is then transferred from c' to f emitting or absorbing a phonon. As a result of this, the electron wave vector changes considerably and the whole pro- cess can be considered as a "nonvertical" transition from i to f with the absorption of a photon $h\nu \approx E_{\mathbf{g}}$. Since each of the processes shown in Fig. 3 may involve the emission or absorption of a phonon, the matrix element which gives the transition probability becomes