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Preface

The modern billion-dollar drug-discovery process strongly relies on both high-
throughput synthesis and screening methods. Whereas the latter is based on
molecular biological methods, the efficient and reliable generation of com-
pound collections often makes use of combinatorial chemistry. Discovered in
the 1980s, this methodology was explored extensively in the 1990s by groups
in academia and in industry. Without any doubt, combinatorial chemistry
changed the whole drug-discovery process and found many applications in
crop science and the material sciences.

However, since its implementation, solution- and solid-phase techniques
have been competing with each other, and although many companies started
their combinatorial chemistry program with solid-phase techniques, solution-
phase combinatorial methods have taken over and now account for approxi-
mately 25% of all combinatorial efforts.

The syntheses of complex, non-polymeric structures, discovered in the
1960s by the late Bruce Merrifield, was largely ignored in the context of solid
supports, mainly due to the fact that appropriate synthesis techniques were
not available.

Since solid-phase chemical methodology strongly differs from traditional
solution-phase chemistry, two chapters deal with this topic. The Brise group
(Jung, Wiehn, Brise) gives an overview of multifunctional linkers, which can
be used for the generation of diversity-oriented collections, simply by cleavage
from resins.

Still in its infancy, solid-phase reactions employ “simple” amide chemistry
in most cases due to their high-yielding, reliable protocols. Ljungdahl, Brom-
field, and Kann address solid-phase organometallic chemistry, which is now
one of the great challenges in reliable solid-phase organic synthesis.

The next four chapters address the construction of designed and native
complex structures, such as polyamines (Hahn and Schepers), natural prod-
ucts (Mentel and Breinbauer) and peptides, with a focus on identification of
bioactive hormone structures (Haack and Beck-Sickinger). Furthermore, the
automated synthesis of carbohydrates is addressed in detail by Castagner and
Seeberger.

Finally, Winssinger, Pianowski, Debaen give an overview of array techniques
that are suitable for solid-phase chemistry.



X Preface

In this volume, state-of-the-art solid-phase synthesis is presented from
different angles. Ranging from methodology development to application in
the synthesis of complex native and designed structures, a complete overview
is presented.

We are confident that addressing the fascinating interface between chem-
istry and biology is only possible by innovative methods in both disciplines.
Combinatorial chemistry is surely one of these.

The editor thanks the editorial staff of Topics in Current Chemistry, in
particular Mrs. Kollmar-Thoni and Dr. Marion Hertel for their professional
support.

Karlsruhe, April 2007 Stefan Brise
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Abstract This review covers recent results in the area of multifunctional linkers for solid
phase synthesis during the period 2000-2006.

Keywords Diversity-oriented synthesis - Linkers - Solid phase synthesis

Abbreviations

AA amino acid

Ac acetyl

acac acetylacetonate

AIBN azobisisobutyronitril

AM aminomethyl

AMB a-methyl benzyl

BAL backbone amide linker

9-BBN 9-borabicyclo[3.3.1]nonane

BHA benzhydrylamine

BME B-mercapto ethanol

Bn benzyl

Boc t-butyloxycarbonyl

BOP benzotriazole-1-(yloxy) tris-(dimethylamino) phosphonium hexafluorophos-
phate

BPO benzoylperoxide

BSA bovine serum albumin

BTC bis-trichloromethyl carbonate

CAN cerium ammonium nitrate

Cbz carbobenzyloxy

CDI carbonyl diimidazole

CSA camphor sulfonic acid

DBU diaza(1,3)bicyclo[5.4.0lundecane

DCC dicyclohexyl carbodiimide

DCH 1,3-dichloro-5,5-dimethylhydantoin

DDQ dichlorodicyanobenzoquinone

DEAD diethylazodicarboxylate
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DEAM
DEPEC
DIBAL
DIC
DIEA
DMAP
DMF
DMPU
DMTMM
DNA
DOS
dppe
dppf
dppp
DSC
DVB
EDCI
Fmoc
EMP
Gly
HASC
HAL
HFIP
HMDS
HMPA
HMPB
HOAt
HOBT
LDA
MAMP
MBHA
mCPBA
NBS
NCS
NMM
NMP
NPCF
NpSSMpact
Nu
PAC
PAM
PEG
PEGA
PFS
PPF
PPTS
PNA
PS
PTMSEL

Py

diethanolaminomethyl

diethyl phosphorocyanidate
diisobutylaluminumhydride

diisopropyl carbodiimide

diisopropylethylamine

diemthylaminopyridine

dimethylformamide

N,N’-dimethylpropylene urea
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
desoxyribonucleic acid

diversity-oriented synthesis
1,3-bis(diphenylphosphino)ethane
1,3-bis(diphenylphosphino)ferrocene
1,3-bis(diphenylphosphino)propane
N,N-disuccinimidyl carbonate

divinylbenzene
N-(3-dimethylaminopropyl)-N-ethylcarbodiimid
9-fluorenylmethyloxycarbonyl
4-formyl-3-(methoxyphenoxy)methyl-PS

glycin

heteroatom-substituted carbonyl linker
hypersensitive acid-labile
hexafluoroisopropanol

hexamethyldisiloxane
hexamethylphosphoramide
4-hydroxymethyl-3-methoxyphenoxy-butyric acid
1-hydroxy-7-azabenzotriazole
1-hydroxybenzotriazol

lithiumdiisopropylamide

Merrifield a-methoxyphenyl
methylbenzhydrylamine

m-chlorperbenzoic acid

N-bromosuccinimide

N-chlorosuccinimide

N-methyl morpholine

N-methyl pyrrolidone
4-nitrophenylchloroformate
2-methoxy-5-[2-((2-nitrophenyl)dithio]-1-oxopropyl)phenylacetic acid
nucleophile

peptide acid linker

phenylacetamidomethyl

polyethylene glycol

polyethylene glycolpoly-(N,N-dimethyl-acrylamide)
perfluoroalkylsulfonyl
1,1’-bis(diphenylphosphino)ferrocene
p-pyridinumtoluene sulfonic acid

peptide nucleic acid

polystyrene

(2-phenyl-2-trimethylsilyl)ethyl

pyridine
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PyBrOP bromo-tris-pyrrolidino phosphoniumhexafluorophosphate
RAM Rink amide

RCM ring-closing metathesis

RRTR resin-to-resin transfer reaction
SAC silyl acid

SASRIN super acid sensitive resin
SCAL safety catch acid labile

SEC 2-alkylsulfonylethyl carbamate
SPPS solid phase peptide synthesis
TBAF tetrabutylammoniumfluoride
TBDPS t-butyldiphenylsilyl

TBTU O-(benzotriazole-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate
TEA triethylamine

THF tetrahydrofuran

Tf trifluormethylsulfonyl

TFA trifluoro acetic acid

TFAA trifluoro acetic acid anhydride
THP tetrahydropyran

TMEDA tetramethylethylenediamine
T™G 2-t-butyl-1,1,3,3-tetramethylguanidine
TMS trimethylsilyl

Trt trityl

XAL xanthenylamide linker

XAN 9-xanthenyl linker

XPHOS 2-dicyclohexylphosphino-2’,4’,6'-triisopropyl-biphenyl

1
Introduction

The advent of combinatorial chemistry being implemented in the modern
drug discovery process in the 1990s [1] has reinitiated the use of solid phase
synthesis originally developed by the late Bruce Merrifield [2]. While in the
early stages of solid phase synthesis, first peptides and later nucleic acids were
favorably synthesized using this technique due to the ease of automation [3],
small molecular entities obeying the Lipinski rules have been prepared in the
last decades with the notable exception by Frechet and others [4, 5]. In par-
ticular, the invention of the split-and-mix-technique by Furka [6] and later
the technological platforms derived from this, e.g. the IRORI techniques [7],
triggered the design and preparation of large compound libraries with more
than 2 000 000 compounds [8]. Diversity-oriented synthesis (DOS), originally
proposed by S. L. Schreiber [9, 10], is today used by many laboratories both
in academia and industry. In particular solid phase synthesis has served as
a technology platform and allows the rapid assembly of building blocks to
generate quite complex structures in few synthetic steps. A crucial point in
the design of compound libraries is the careful choice of the appropriate
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linker attaching the molecule to the solid support [11, 12]. Linkers do not only
serve as the point of attachment, they also control the chemistry being al-
lowed during the assembly stage and importantly are directing the functional
group being generated upon cleavage. While peptide synthesis requires more
or less the detachment of carboxylic acids and amides, diversity-oriented syn-
thesis strongly relies on the cleavage of various functional groups in order to
avoid constraints. Thus, a high number of various linkers have been prepared
and discussed in a number of reviews.

Linkers allowing the cleavage of one certain functional group have been
named mono-functional linkers [13]. However, an attachment being cleav-
able to generate more than one functional group is named a multifunctional
linker [14-16] (Scheme 1).

)
-1

Q) GELC}[J/

Scheme 1 Solid phase synthesis and multifunctional cleavage

We will define multifunctional linkers as attachments which allow the gen-
eration of more than one functional group upon cleavage from a solid support
either with or without implementation of building blocks.

Linkers which allow cleavage of reactive functional groups that in turn can
be reacted with added building blocks in a one-pot method are also called
multifunctional.

In this review we will discuss the multifunctional linkers in terms of as-
sembly on solid supports, stability towards reaction conditions, and finally
the issue of introduction of multifunctionality.



