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SOLID STATE DIFFUSION



To Susan Anne



PREFACE

This graduate level book presents the theory of diffusion in solids in as
logical a manner as is known to this author. I have included the composite
results of many approaches to the problems of diffusion. Much of the
understanding is based on varied topics that bear on the subject. Where
possible, I have stressed the kinetic theory with examples of dilute alloys.
Often, however, I have resorted to the phenomenological developments,
because of the complexity associated with the straightforward random
walk and kinetic theory approaches.

With the exception of the first chapter, the mathematical background
necessary includes only partial differentiation and some matrix algebra.
The latter subject is often missed by beginning materials science and
metallurgy graduate students; however, the depth herein is not over-
whelming since the inverse matrix is the only real complexity used. Chap-
ter 1 includes a fairly complete discussion of the operations surrounding
its use and some complex variables, neither of which should present the
student with too much difficulty.

Chapters 2, 3, and Appendix A contain some statistical mechanics. The
level is comparable to that of Introduction to Statistical Thermodynamics
by T. Hill, which is highly recommended. The maximum term method is
used extensively in the three places where statistical mechanics is neces-
sary. The principle behind the maximum term method is, of course, the
minimum free energy of an equilibrium state.

Some readers may feel that the extensive kinetic development in
Chapter 2 is presented too early in the text. In my view, it is the most
logical way of introducing the phenomenological theory; that is, by
showing that the diffusion flux is proportional to the chemical potential
gradient, Tather than by assuming it to be the case based on some vague
thermodynamic presumptions.

The phenomenological theory is of great value in understanding the
experiments in concentrated systems. Unfortunately, some authors have
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viii Preface

not been sufficiently careful in their definitions. Consequently, self-
diffusion is carefully defined in Chapter 4, and subsequently related to
off-diagonal phenomenological coefficients and vacancy wind terms with
specific examples for dilute alloys. The same set of phenomenological
coefficients arise when external fields influence mass transfer. This gives
the opportunity to compare results from both sets of experiments or
theories, as is done in that chapter. ‘

There are problems included for all chapters. The easier problems are
found in the earlier chapters; difficult problems and those that require a
computer are marked with a dagger. The problems are included to
supplement the text in depth and scope.

J. P. STARK

Austin, Texas
February 1976
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CHAPTER 1

INTRODUCTION

FLUX EQUATIONS FOR A CONTINUUM

The motion of atoms in crystals follows various laws that can be written
for a macroscopic continuum to follow the dissolution process. The con-
nection between the continuum behavior on which experiments are
based and the atomic behavior that can explain the continuum laws is the
major purpose of research in diffusion. This is not to imply that the
continuum laws are unimportant; they are the basis for nearly all the
studies of phase transformations, oxidation rates, and other phenomena
related to mass transport in the solid state. However, an understanding of
the parameters that are present in the continuum laws and that control
the rates with which these processes occur provides part of the basis for
the innovative development of new materials behavior.

The manipulation of the continuum laws is usually an exercise in
applied mathematics. It may be assumed that such a topic is irrelevant to
the presentation of diffusion in solids. This may be true for a large
number of cases; however, in research one is attempting to interpret the
continuum behavior in terms of the kinetics of atom motion, and such an
interpretation can be prejudiced by an incorrect application of the con-
tinuum laws. This is particularly true if, for example, two different
interpretations would lead to the same results within experimental error.
As a consequence, in this book some attention is paid to the manipulation
of these laws in the form of differential equations.

First, however, the continuum equations are introduced. The con-
tinuum results will ultimately be compared to the kinetic behavior of
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2 Introduction

individual atoms. These atoms move relative to the crystallographic
planes on which the atoms reside, and consequently, the continuum
behavior should be written relative to a coordinate system that moves at
the same velocity as these atom planes. The flux of matter of a given
component in a homogeneous and multicomponent system is a vector
quantity reflecting the mass of that component crossing a unit area per
unit time. The unit area is normal to the flux vector. An equation for the
flux of component K, Jk is

JK=_DﬁVCK+CKVFK 1.1

where D¥ is the self-diffusion coefficient of a tracer of component K, Ck
is the concentration of component K, and Vgk is the drift velocity of
component K due to a force F. The diffusion coefficient is generally a
tensor of rank 2 with typical units of cm?/sec. The concentration is in
some appropriate unit of mass per unit volume, such as moles/cm>. The
product of the diffusion coefficient tensor and the concentration gradient
is a tensor contraction.

When the velocity due to an applied force Vgg in Eq. 1.1 is zero, this
result is known as Fick’s first law. The occurrence of the velocity term
results from the incidence of atoms experiencing a net drift due to some
applied field. Some of the fields that are experimentally known to cause
mass transfer are the electric field, gravitational field, temperature gra-
dient, chemical potential gradient, and so forth.

If the lattice planes are moving at some velocity V, relative to the fixed
laboratory frame of reference, then in this fixed coordinate system the
flux, J¢", is related to the flux in Eq. 1.1 by the relationship

J" =Jk+ Cx V. = —DENCx + Cx(Vex + V1) 1.2

Such a situation is often the case because the applied fields causing the
motion of component K will also cause the drift of all other components
in the system, and if each component moves relative to the lattice at some
different rate, the lattice itself may move.

The net rate of change of the mass of component K within a given
volume fixed relative to the laboratory coordinates is

A% A\
%J CKdV='[ aa%dv 1.3

The mass of component K inside the volume element V can change in
two ways. First, by Eq. 1.2 one can have flow through the surface of the
volume element. Second, one can produce an annihilate component K
through a chemical reaction, although this is less common in solids.
Generally, there may be r chemical reactions of which each contributes to
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the production of component K. Let the reaction rate per unit volume be
vk;R; for the jth chemical reaction. The rate of production of K per unit
volume from the various chemical reactions is

r
Z vkiR;
j=1

where v; is positive for production and negative for annihilation of compon-
ent K. The coefficients vg; divided by the molecular mass M is proportional
to the stoichiometric coefficient with which component K is found in the
jth chemical reaction, and R; is the rate that reaction j proceeds in units
of mass per volume x time. The surface of the volume element, (), yields a
vector d{) whose normal direction points outward from the volume. The
reaction rates and the flux contribute to the rate of change in the
concentration of component K through the relation
d

\'%4 Q r v
E.[ chv=—J JK"-dQ+ZJ ViR, dV 1.4
j=1

Gauss’ theorem may be applied to the surface integral; this leaves Eq. 1.4

as d \'4 \% r
EJ’ CKdV:J‘ (—V'JKL+ZVKjRj> av
i=1
\%
=I 3Ci 4/
at

However, the volume element V is completely arbitrary, and this implies

that ,
2 S 'S PR 1.5

at j=1
Equation 1.5 is a general statement of the law of conservation of mass.
One might argue that it is extraneous to consider chemical reactions
occurring within a homogeneous crystal. A simple example can show the
importance of such terms in the conservation equation 1.5. Consider, for
example, the motion of hydrogen through a steel bar that is about to be
embrittled. The hydrogen probably goes into solution in a monatomic
form as it resides on interstitial sites within the crystal. If a hydrogen ion
meets an oxygen ion and they are close enough together, they may share
some of the surrounding electrons forming a pair somewhat of the form
H:O. This pair will move through the crystal at a different rate than does
an isolated hydrogen ion: hence there may be two important diffusion
coefficients to consider, that of the pair and that of the isolated hydrogen
ion. It may be convenient in some cases to consider the pair as being less
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mobile, and such trapping mechanisms may decrease the rate of embrittle-
ment of the steel sample by hydrogen.

A specific example of a problem, in which it was convenient to use
chemical reactions in solids, is discussed in Chapter 7. At this point,
however, assume that R; =0 for all j; there are no chemical reactions.
Furthermore, in most research problems, Eq. 1.1, 1.2, and 1.5 are used in
a one-dimensional form rather than three dimensions as indicated. This is
true because the research experimenter attempts to determine a kinetic
interpretation of the tracer diffusivity, D¥, and the velocity from an
applied force, Vgg, for each component. This information, as well as a
solution to the differential equation 1.5, is most reasonably accomplished
with the concentration gradients and applied force collinear in some
crystallographic direction. If only the diagonal elements of the diffusion
coefficient, written as a matrix, are nonzero (as shown for some systems in
this chapter), and assuming the applied field and concentration gradients
exist only along the x axis Eq. 1.1 becomes

aC
—Dxa—K+CKVFK 1.6
Similarly Eq. 1.5 becomes
aCx  —aJk"
—=—= 1.7
at 0x
d CK oD% 8Cx 9Cxk
=D% — ——— (Vg + V,
Ko Tox Tox ax (VT VL)
(Ve +V,
_CK ( FK L) 18

ox
It will become apparent that if one may write the velocity for an
applied force as
oD%
ax

Vixk=Vk—

then it is possible to write Eq. 1.6 as

aDEC
Jk=— BKx K+CKVII< 1.9

If a detailed analysis shows that the tracer diffusion coefficient is position
dependent, as would be the case in a temperature gradient, then that
analysis would also show that the tracer drift velocity Vi includes a term

D¥/ax. In that instance, Eq. 1.9 must be used in conjunction with Eq.



Diffusion in an Infinite Crystal 5

1:7 because the d,lffusmn coefficient gradient terms do not contribute to
the flux; they canceél it. The velocity term Vgg in Egs. 1.1, 1.6, and 1.8
does not contain any contribution from the diffusion coefficient gradient.
The contribution of the diffusion coefficient gradient to the flux is
discussed in Chapter 2 where a kinetic analysis derives Eq. 1.9 from
which Eq. 1.6 may be found by cancelling the appropriate terms.

DIFFUSION IN AN INFINITE CRYSTAL

For an infinitely dilute solute in a binary metal alloy moving through the
crystal with an applied electric field, the drift velocity per unit force is
nonzero. The net drift velocity is written as Vgx+ V. = QxED¥/KgT,
where Qg is the effective ionic charge on the solute ion, E is the electric
field intensity, Kp is Boltzmann’s constant, and T is the absolute temper-
ature. If one assumes that the diffusion coefficient is constant, which will
be true if the temperature is uniform, and that E is constant, then Eq. 1.8
becomes

ﬁ‘:p*[azc“ ac"] 1.10

at ax> ax

where a = QgE/KgT. Equation 1.10 is a linear differential equation with
constant coefficients. One may solve Eq. 1.10 for the concentration of
solute Cx dependent on x and t, provided that appropriate boundary and
initial conditions are applied. The most appropriate method of solution
for such problems is through the use of integral transforms. We will
assume that a thin layer of solute, Qo being the mass per unit area, is
deposited on the end of the semi-infinite sample of uniform cross sec-
tional area at t =0. At this time the solute is not found elsewhere in the
sample. Therefore, the appropriate conditions are

Ck(x,t=0)=
J Ck(x, 1) dx = Qo,
0

and lim Ck(x, 1) is finite. The method of solution is as follows. Assume

x—>x

that 5
C(x, s)=J Ck(x, t)e ™ dt 1.11
0

Equation 1.11 transforms the partial differential equation into an ordi-
nary differential equation. With Eq. 1.11 and integration by parts, it is
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easy to show that

= = aC
sC(x, s)— Ck(x, t=0)=J e —Eg; 1.12
o ot
and it is obvious that
ané S n
,,=I e8I Cky  po1,2,... 1.13
ax 0 ax

Substituting Eqs. 1.11-1.13 into Eq. 1.10 and using the initial condition
that Ck(x, t=0)=0, Eq. 1.10 becomes

a————7C=0 1.14
x

The Laplace transform, Eq. 1.11, has reduced the partial differential
equation, 1.10, into an ordinary differential equation, 1.14. Equation

1.14 is solved by assuming a solution of the form C= Ae™. With this
substitution one finds, assuming a =0, that

s
'yz—a'y~D—§=O 1.15
However
ail\/( 2, 4s>
= — — a —_—
L D¥
so that

con5- WY
+A2exp[[g—%\/@]x}. 1.16

When lim Ck(x, t) is finite, one infers that lim C(x, s) is finite, from

x—>c X—>c

which one concludes that A; =0. The other boundary condition,

J Ck(x, 1) dx= Qg
o
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must be transformed to C(x, s) as follows:

J e_S'J‘ Ck(x, t) dx dt =J C(x, s) dx
0 0 Y Y0

:J e'Qy dt =2
0 N
= —a 1 4s
SPR CXN et
L s {[2 2 V\* Tpx) ¥ &
A,

= 1.17

Hence

_Qo[a 1\/( R 4s>]

A, =——|=—= +—

275 127 2V\* "bg

According to LaPlace transform theory, the concentration Ck(x,t) is
found from the following integral in the complex plane,

(o)
5 a—\ja +—
o+i> D*

QOI , % [a 1\/( 5 4s>]
Cx= ; == Egais
Sy R s exp |3 2V @ T pg) [x &

In Eq. 1.18, o is to the right of all singularities in the function inside the
integral. An analysis of the type of singularities present is aided by the
substitution 4Z/D* = a’+4s/D¥ and dZ = ds. Then

_—Q r““ exp [ax/2 — a’D§t/4)(a — 2V (Z/ DY) exp (Zt— xZ/D%) dZ
T dmi )y (Z—-D}a’l4)

There is a simple pole at Z— D%a?/4=0, a branch point at xv¥Z/D%=0
and at (« —2v Z/D¥%) = 0. One can get rid of the latter branch point by the
substitution Z=(iV)?, and dZ= —2V dV. This substitution, however,
changes the contour of integration from that shown in Fig. 1.1 to contour
C, in Fig. 1.2. Hence

ax o’D¥Et

_ Qo ( )
CK_'rr/DﬁeXp ) 1 I 1.19




