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Preface

The next several pages describe the goals and the main topics of this book.

Questions in discrete geometry typically involve finite sets of points, lines,
circles, planes, or other simple geometric objects. For example, one can ask,
what is the largest number of regions into which n lines can partition the
plane, or what is the minimum possible number of distinct distances occur-
ring among n points in the plane? (The former question is easy, the latter
one is hard.) More complicated objects are investigated, too, such as convex
polytopes or finite families of convex sets. The emphasis is on “combinato-
rial” properties: Which of the given objects intersect, or how many points
are needed to intersect all of them, and so on.

Many questions in discrete geometry are very natural and worth studying
for their own sake. Some of them, such as the structure of 3-dimensional
convex polytopes, go back to the antiquity, and many of them are motivated
by other areas of mathematics. To a working mathematician or computer
scientist, contemporary discrete geometry offers results and techniques of
great diversity, a useful enliancement of the “bag of tricks” for attacking
problems in her or his field. My experience in this respect comes mainly
from combinatorics and the design of efficient algorithms, where, as time
progresses, more and more of the first-rate results are proved by methods
drawn from seemingly distant areas of mathematics and where geometric
methods are among the most prominent.

The development of computational geometry and of geometric methods in
combinatorial optimization in the last 20-30 years has stimulated research in
discrete geometry a great deal and contributed new problems and motivation.
Parts of discrete geometry are indispensable as a foundation for any serious
study of these fields. I personally became involved in discrete geometry while
working on geometric algorithms, and the present book gradually grew out of
lecture notes initially focused on computational geometry. (In the meantime,
several books on computational geometry have appeared, and so I decided to
concentrate on the nonalgorithmic part.)

In order to explain the path chosen in this book for exploring its subject,
let me compare discrete geometry to an Alpine mountain range. Mountains
can be explored by bus tours, by walking, by serious climbing, by playing
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in the local casino, and in many other ways. The book should provide safe
trails to a few peaks and lookout points (key results from various subfields
of discrete geometry). To some of them, convenient paths have been marked
in the literature, but for others, where only climbers’ routes exist in research
papers, I tried to add some handrails, steps, and ropes at the critical places,
in the form of intuitive explanations, pictures, and concrete and elementary
proofs.! However, I do not know how to build cable cars in this landscape:
Reaching the higher peaks, the results traditionally considered difficult, still
needs substantial effort. I wish everyone a clear view of the beautiful ideas in
the area, and I hope that the trails of this book will help some readers climb
yet unconquered summits by their own research. (Here the shortcomings of
the Alpine analogy become clear: The range of discrete geometry is infinite
and no doubt, many discoveries lie ahead, while the Alps are a small spot on
the all too finite Earth.)

This book is primarily an introductory textbook. It does not require any
special background besides the usual undergraduate mathematics (linear al-
gebra, calculus, and a little of combinatorics, graph theory, and probability).
It should be accessible to early graduate students, although mastering the
more advanced proofs probably needs some mathematical maturity. The first
and main part of each section is intended for teaching in class. I have actually
taught most of the material, mainly in an advanced course in Prague whose
contents varied over the years, and a large part has also been presented by
students, based on my writing, in lectures at special seminars (Spring Schools
of Combinatorics). A short summary at the end of the book can be useful for
reviewing the covered material.

The book can also serve as a collection of surveys in several narrower
subfields of discrete geometry, where, as far as I know, no adequate recent
treatment is available. The sections are accompanied by remarks and biblio-
graphic notes. For well-established material, such as convex polytopes, these
parts usually refer to the original sources, point to modern treatments and
surveys, and present a sample of key results in the area. For the less well cov-
ered topics, I have aimed at surveying most of the important recent results.
For some of them, proof outlines are provided, which should convey the main
ideas and make it easy to fill in the details from the original source.

Topics. The material in the book can be divided into several groups:

e Foundations (Sections 1.1-1.3, 2.1, 5.1-5.4, 5.7, 6.1). Here truly basic
things are covered, suitable for any introductory course: linear and affine
subspaces, fundamentals of convex sets, Minkowski’s theorem on lattice
points in convex bodies, duality, and the first steps in convex polytopes,
Voronoi diagrams, and hyperplane arrangements. The remaining sections
of Chapters 1, 2, and 5 go a little further in these topics.

1 T also wanted to invent fitting names for the important theorems, in order to
make them easier to remember. Only few of these names are in standard usage.
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e Combinatorial complezity of geometric configurations (Chapters 4, 6, 7,
and 11). The problems studied here include line-point incidences, com-
plexity of arrangements and lower envelopes, Davenport—Schinzel se-
quences, and the k-set problem. Powerful methods, mainly probabilistic,
developed in this area are explained step by step on concrete nontriv-
ial examples. Many of the questions were motivated by the analysis of
algorithms in computational geometry.

e [ntersection patterns and transversals of convex sets. Chapters 8-10 con-
tain, among others, a proof of the celebrated (p, g)-theorem of Alon and
Kleitman, including all the tools used in it. This theorem gives a suffi-
cient condition guaranteeing that all sets in a given family of convex sets
can be intersected by a bounded (small) number of points. Such results
can be seen as far-reaching generalizations of the well-known Helly’s the-
orem. Some of the finest pieces of the weaponry of contemporary discrete
and computational geometry, such as the theory of the VC-dimension or
the regularity lemma, appear in these chapters.

e Geometric Ramsey theory (Chapters 3 and 9). Ramsey-type theorems
guarantee the existence of a certain “regular” subconfiguration in every
sufficiently large configuration; in our case we deal with geometric ob-
jects. One of the historically first results here is the theorem of Erdds
and Szekeres on convex independent subsets in every sufficiently large
point set.

e Polyhedral combinatorics and high-dimensional convezity (Chapters 12—
14). Two famous results are proved as a sample of polyhedral combina-
torics, one in graph theory (the weak perfect graph conjecture) and one in
theoretical computer science (on sorting with partial information). Then
the behavior of convex bodies in high dimensions is explored; the high-
lights include a theorem on the volume of an N-vertex convex polytope
in the unit ball (related to algorithmic hardness of volume approxima-
tion), measure concentration on the sphere, and Dvoretzky’s theorem on
almost-spherical sections of convex bodies.

e Representing finite metric spaces by coordinates (Chapter 15). Given an
n-point metric space, we would like to visualize it or at least make it com-
putationally more tractable by placing the points in a Euclidean space,
in such a way that the Euclidean distances approximate the given dis-
tances in the finite metric space. We investigate the necessary error of
such approximation. Such results are of great interest in several areas;
for example, recently they have been used in approximation algorithms
in combinatorial optimization (multicommodity flows, VLSI layout, and
others).

These topics surely do not cover all of discrete geometry, which is a rather
vague term anyway. The selection is (necessarily) subjective, and naturally
I preferred areas that I knew better and/or had been working in. (Unfortu-
nately, I have had no access to supernatural opinions on proofs as a more
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reliable guide.) Many interesting topics are neglected completely, such as the
wide area of packing and covering, where very accessible treatments exist,
or the celebrated negative solution by Kahn and Kalai of the Borsuk conjec-
ture, which I consider sufficiently popularized by now. Many more chapters
analogous to the fifteen of this book could be added, and each of the fifteen
chapters could be expanded into a thick volume. But the extent of the book,
as well as the time for its writing, are limited.

Exercises. The sections are complemented by exercises. The little framed
numbers indicate their difficulty: [ is routine, [5] may need quite a bright
idea. Some of the exercises used to be a part of homework assignments in my
courses and the classification is based on some experience, but for others it
is just an unreliable subjective guess. Some of the exercises, especially those
conveying important results, are accompanied by hints given at the end of
the book.

Additional results that did not fit into the main text are often included as
exercises, which saves much space. However, this greatly enlarges the danger
of making false claims, so the reader who wants to use such information may
want to check it carefully.

Sources and further reading. A great inspiration for this book project
and the source of much material was the book Combinatorial Geometry of
Pach and Agarwal [PA95]. Too late did I become aware of the lecture notes by
Ball [Bal97] on modern convex geometry; had I known these earlier I would
probably have hesitated to write Chapters 13 and 14 on high-dimensional
convexity, as I would not dare to compete with this masterpiece of mathe-
matical exposition. Ziegler’s book [Zie94] can be recommended for studying
convex polytopes. Many other sources are mentioned in the notes in each
chapter. For looking up information in discrete geometry, a good starting
point can be one of the several handbooks pertaining to the area: Handbook
of Convezx Geometry (GW93|, Handbook of Discrete and Computational Ge-
ometry [GO97], Handbook of Computational Geometry [SU00], and (to some
extent) Handbook of Combinatorics [GGL95], with numerous valuable sur-
veys. Many of the important new results in the field keep appearing in the
journal Discrete and Computational Geometry.

Acknowledgments. For invaluable advice and/or very helpful comments on
preliminary versions of this book I would like to thank Micha Sharir, Giinter
M. Ziegler, Yuri Rabinovich, Pankaj K. Agarwal, Pavel Valtr, Martin Klazar,
Nati Linial, Giinter Rote, Janos Pach, Keith Ball, Uli Wagner, Imre Barany,
Eli Goodman, Gyorgy Elekes, Johannes Blomer, Eva Matougkova, Gil Kalai,
Joram Lindenstrauss, Emo Welzl, Komei Fukuda, Rephael Wenger, Piotr In-
dyk, Sariel Har-Peled, Vojtéch Rodl, Géza Téth, Karoly Boroezky Jr., Rados
Radoi¢ié, Helena Nyklova, Vojtéch Franék, Jakub Simek, Avner Magen, Gre-
gor Baudis, and Andreas Marwinski (I apologize if I forgot someone; my notes
are not perfect, not to speak of my memory). Their remarks and suggestions
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allowed me to improve the manuscript considerably and to eliminate many of
the embarrassing mistakes. I thank David Kramer for a careful copy-editing
and finding many more mistakes (as well as offering me a glimpse into the
exotic realm of English punctuation). I also wish to thank everyone who par-
ticipated in creating the friendly and supportive environments in which I
have been working on the book.

Errors. If you find errors in the book, especially serious ones, I would
appreciate it if you would let me know (email: matousek@kam.mff . cuni.cz).
I plan to post a list of errors at http://www.ms.mff.cuni.cz/ " matousek.

Prague, July 2001 Jiri MatouSek



Notation and Terminology

This section summarizes rather standard things, and it is mainly for referen
More special notions are introduced gradually throughout the book. In or:
to facilitate independent reading of various parts, some of the definitions .
even repeated several times.

If X is a set, | X| denotes the number of elements (cardinality) of X. If
is a multiset, in which some elements may be repeated, then | X| counts e:
element with its multiplicity.

The very slowly growing function log* z is defined by log™ z = 0 for z -
and log” z = 1 + log* (log, z) for z > 1.

For a real number z, || denotes the largest integer less than or eq
to x, and [z] means the smallest integer greater than or equal to z. 'l
boldface letters R and Z stand for the real numbers and for the intege
respectively, while R? denotes the d-dimensional Euclidean space. For a pc
z = (z1,Z2,-..,24) € RY, ||z|| = /22 + 23 + - - - + 22 is the Euclidean no
of z, and for z,y € R%, (z,y) = T1y1 +Tays +- - - +T4yq is the scalar produ
Points of R? are usually considered as column vectors.

The symbol B(z,r) denotes the closed ball of radius r centered at z
some metric space (usually in R? with the Euclidean distance), i.e., the
of all points with distance at most 7 from z. We write B™ for the unit t
B(0,1) in R™. The symbol A denotes the boundary of a set A C R%, t.
is, the set of points at zero distance from both A and its complement.

For a measurable set A C R, vol(A) is the d-dimensional Lebesgue m
sure of A (in most cases the usual volume).

Let f and g be real functions (of one or several variables). The notat
f = O(g) means that there exists a number C such that |f| < C|g| for
values of the variables. Normally, C' should be an absolute constant, bu
f and g depend on some parameter(s) that we explicitly declare to be fi:
(such as the space dimension d), then C may depend on these paramet
as well. The notation f = Q(g) is equivalent to g = O(f), f(n) = o(g(
to lim, 400 (f(n)/g9(n)) = 0, and f = O(g) means that both f = O(g) ¢
f=9(g).

For a random variable X, the symbol E[X] denotes the expectation of
and Prob[A] stands for the probability of an event A.
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Graphs are considered simple and undirected in this book unless stated
therwise, so a graph G is a pair (V, E), where V is a set (the vertez set) and
' C (‘;) is the edge set. Here (‘,:) denotes the set of all k-element subsets
f V. For a multigraph, the edges form a multiset, so two vertices can be
»mnected by several edges. For a given (multi)graph G, we write V(G) for
1e vertex set and FE(G) for the edge set. A complete graph has all possible

iges; that is, it is of the form (V, (‘2/)) A complete graph on n vertices is

enoted by K,. A graph G is bipartite if the vertex set can be partitioned
ito two subsets Vi and V», the (color) classes, in such a way that each edge
onnects a vertex of V; to a vertex of Vo. A graph G’ = (V', E’) is a subgraph
fagraph G = (V,E) if V' CV and E’ C E. We also say that G contains

copy of H if there is a subgraph G’ of G isomorphic to H, where G’ and
[ are isomorphic if there is a bijective map ¢:V(G’') — V(H) such that
u,v} € E(G’) if and only if {p(u), p(v)} € E(H) for all u,v € V(G’). The
egree of a vertex v in a graph G is the number of edges of G containing v.
n 7-reqular graph has all degrees equal to . Paths and cycles are graphs as
1 the following picture,

1 [NV A A OO0

paths cycles

nd a path or cycle in G is a subgraph isomorphic to a path or cycle, respec-
ively. A graph G is connected if every two vertices can be connected by a
ath in G.

We recall that a set X C R% is compact if and only if it is closed and
ounded, and that a continuous function f: X — R defined on a compact X
ttains its minimum (there exists zg € X with f(z¢) < f(z) for all z € X).

The Cauchy—Schwarz inequality is perhaps best remembered in the form
2,9) < o]l - lyll for all z,y € R".

A real function f defined on an interval A C R (or, more generally, on a
onvex set A C R%) is conver if f(tx + (1-t)y) < tf(z) + (1—t)f(y) for all
5,y € A and t € [0,1]. Geometrically, the graph of f on [z,y] lies below the
egment connecting the points (z, f(z)) and (y, f(y)). If the second derivative
atisfies f”(xz) > 0 for all z in an (open) interval A C R, then f is convex
m A. Jensen’s inequality is a straightforward generalization of the definition
f convexity: f(t1o1 +toxo + -+ +toxn) < t1f(z1) +taf(z2) + -+ tn f(2zn)
or all choices of nonnegative ¢; summing to 1 and all z;,...,z, € A. Or in
ntegral form, if 4 is a probability measure on A and f is convex on A, we have
F ([ zdu(z)) < [, f(z)du(z). In the language of probability theory, if X
s a real random variable and f: R — R is convex, then f(E[X]) < E[f(X)];
or example, (E[X])? < E[X?].
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1

Convexity

We begin with a review of basic geometric notions such as hyperplanes and
affine subspaces in RY, and we spend some time by discussing the notion
of general position. Then we consider fundamental properties of convex sets
in R%, such as a theorem about the separation of disjoint convex sets by a
hyperplane and Helly’s theorem.

1.1 Linear and Affine Subspaces, General Position

Linear subspaces. Let R? denote the d-dimensional Euclidean space. The
points are d-tuples of real numbers, z = (z1,z2,...,Z4).

The space R? is a vector space, and so we may speak of linear subspaces,
linear dependence of points, linear span of a set, and so on. A linear subspace
of R4 is a subset closed under addition of vectors and under multiplication
by real numbers. What is the geometric meaning? For instance, the linear
subspaces of R? are the origin itself, all lines passing through the origin,
and the whole of R2. In R3, we have the origin, all lines and planes passing
through the origin, and R3.

Affine notions. An arbitrary line in R2, say, is not a linear subspace unless
it passes through 0. General lines are what are called affine subspaces. An
affine subspace of R® has the form = + L, where z € R? is some vector and L
is a linear subspace of R%. Having defined affine subspaces, the other “affine”
notions can be constructed by imitating the “linear” notions.

What is the affine hull of a set X C R%? It is the intersection of all affine
subspaces of R? containing X. As is well known, the linear span of a set X
can be described as the set of all linear combinations of points of X. What
is an affine combination of points aj,as,...,a, € R? that would play an
analogous role? To see this, we translate the whole set by —a,, so that a,
becomes the origin, we make a linear combination, and we translate back by
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+a,. This yields an expression of the form (a1 — a,) + B2(az —an) +--- +
Br(an—an)+an = fra1+P2as+- -+ Bn1an-1+(1-01—P2—---—PBn-1)an,
where (1, ..., 3, are arbitrary real numbers. Thus, an affine combination of
points a1, ...,a, € R?% is an expression of the form

aya; + -+ -+ apa,, where ay,...,a, € Rand oy +-- -+ a, = 1.

Then indeed, it is not hard to check that the affine hull of X is the set of all
affine combinations of points of X.

The affine dependence of points aq,...,a, means that one of them can
be written as an affine combination of the others. This is the same as the

existence of real numbers ay, s, ...a,, at least one of them nonzero, such
that both

ai1ay + agag + -+ apa, =0and g +ag + -+, = 0.

(Note the difference: In an affine combination, the ; sum to 1, while in an
affine dependence, they sum to 0.)

Affine dependence of a4,...,a, is equivalent to linear dependence of the
n—1 vectors a; —a,,as —an,...,a,_1 —a,. Therefore, the maximum possible
number of affinely independent points in R is d+1.

Another way of expressing affine dependence uses “lifting” one dimension
higher. Let b; = (a;, 1) be the vector in R4*! obtained by appending a new
coordinate equal to 1 to a;; then aq,...,a, are affinely dependent if and only
if b1,..., b, are linearly dependent. This correspondence of affine notions in
R¢ with linear notions in R%*! is quite general. For example, if we identify
R? with the plane z3 = 1 in R? as in the picture,

e

then we obtain a bijective correspondence of the k-dimensional linear sub-
spaces of R? that do not lie in the plane 3 = 0 with (k—1)-dimensional affine
subspaces of R2. The drawing shows a 2-dimensional linear subspace of R3
and the corresponding line in the plane z3 = 1. (The same works for affine
subspaces of R% and linear subspaces of R4t! not contained in the subspace
Td4+1 = 0.)

This correspondence also leads directly to extending the affine plane R?
into the projective plane: To the points of R? corresponding to nonhorizontal
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lines through 0 in R3 we add points “at infinity,” that correspond to hori-
zontal lines through 0 in R3. But in this book we remain in the affine space
most of the time, and we do not use the projective notions.

Let ay,as,...,a44+1 be points in R4, and let A be the d x d matrix with
a; — ag+1 as the ¢th column, ¢ = 1,2,...,d. Then ay,...,aq4; are affinely
independent if and only if A has d linearly independent columns, and this is
equivalent to det(A) # 0. We have a useful criterion of affine independence
using a determinant.

Affine subspaces of R? of certain dimensions have special names. A (d—1)-
dimensional affine subspace of R? is called a hyperplane (while the word plane
usually means a 2-dimensional subspace of R¢ for any d). One-dimensional
subspaces are lines, and a k-dimensional affine subspace is often called a k-
flat.

A hyperplane is usually specified by a single linear equation of the form
a171+asxo+- - -+agry = b. We usually write the left-hand side as the scalar
product (a,z). So a hyperplane can be expressed as the set {x € R%: (a,z) =
b} where a € R%\ {0} and b € R. A (closed) half-space in R? is a set
of the form {x € R% (a,z) > b} for some a € R?\ {0}; the hyperplane
{z € R%: (a,z) = b} is its boundary.

General k-flats can be given either as intersections of hyperplanes or as
affine images of R¥ (parametric expression). In the first case, an intersection
of k hyperplanes can also be viewed as a solution to a system Az = b of linear
equations, where x € R4 is regarded as a column vector, A is a k X d matrix,
and b € R*. (As a rule, in formulas involving matrices, we interpret points
of R? as column vectors.)

An affine mapping f: RF — R has the form f:y — By+c for some d x k
matrix B and some ¢ € R%, so it is a composition of a linear map with a
translation. The image of f is a k’-flat for some k' < min(k, d). This k’ equals
the rank of the matrix B.

General position. “We assume that the points (lines, hyperplanes,. .. ) are
in general position.” This magical phrase appears in many proofs. Intuitively,
general position means that no “unlikely coincidences™ happen in the consid-
ered configuration. For example, if 3 points are chosen in the plane without
any special intention, “randomly,” they are unlikely to lie on a common line.
For a planar point set in general position, we always require that no three
of its points be collinear. For points in R? in general position, we assume
similarly that no unnecessary affine dependencies exist: No k < d+1 points
lie in a common (k—2)-flat. For lines in the plane in general position, we
postulate that no 3 lines have a common point and no 2 are parallel.

The precise meaning of general position is not fully standard: It may
depend on the particular context, and to the usual conditions mentioned
above we sometimes add others where convenient. For example, for a planar
point set in general position we can also suppose that no two points have the
same z-coordinate.
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What conditions are suitable for including into a “general position” as-
sumption? In other words, what can be considered as an unlikely coincidence?
For example, let X be an n-point set in the plane, and let the coordinates of
the ith point be (z;, y;). Then the vector v(X) = (z1,Z2,. .., Tn,Y1,Y2, - - Yn)
can be regarded as a point of R?". For a configuration X in which =, = x5,
i.e., the first and second points have the same z-coordinate, the point v(X)
lies on the hyperplane {z; = z2} in R?". The configurations X where some
two points share the z-coordinate thus correspond to the union of (’2‘) hy-
perplanes in R?". Since a hyperplane in R?" has (2n-dimensional) measure
zero, almost all points of R?"™ correspond to planar configurations X with all
the points having distinct z-coordinates. In particular, if X is any n-point
planar configuration and € > 0 is any given real number, then there is a con-
figuration X', obtained from X by moving each point by distance at most €,
such that all points of X’ have distinct z-coordinates. Not only that: Almost
all small movements (perturbations) of X result in X’ with this property.

This is the key property of general position: Configurations in general
position lie arbitrarily close to any given configuration (and they abound
in any small neighborhood of any given configuration). Here is a fairly gen-
eral type of condition with this property. Suppose that a configuration X
is specified by a vector t = (¢1,t2,...,tn) of m real numbers (coordinates).
The objects of X can be points in R¢, in which case m = dn and the t;
are the coordinates of the points, but they can also be circles in the plane,
with m = 3n and the ¢; expressing the center and the radius of each circle,
and so on. The general position condition we can put on the configuration
X is p(t) = p(ty,ta,...,tm) # 0, where p is some nonzero polynomial in m
variables. Here we use the following well-known fact (a consequence of Sard’s
theorem; see, e.g., Bredon [Bre93|, Appendix C): For any nonzero m-variate
polynomial p(ty,...,tn), the zero set {t € R™: p(t) = 0} has measure 0 in
R™.

Therefore, almost all configurations X satisfy p(¢) # 0. So any condition
that can be expressed as p(t) # 0 for a certain polynomial p in m real
variables, or, more generally, as p;(t) # 0 or p2(t) # 0 or ..., for finitely or
countably many polynomials p1,p2, - .., can be included in a general position
~ assumption.

For example, let X be an n-point set in R¢, and let us consider the con-
dition “no d+1 points of X lie in a common hyperplane.” In other words, no
d+1 points should be affinely dependent. As we know, the affine dependence
of d+1 points means that a suitable d x d determinant equals 0. This deter-
minant is a polynomial (of degree d) in the coordinates of these d+1 points.
Introducing one polynomial for every (d+1)-tuple of the points, we obtain
( dil) polynomials such that at least one of them is 0 for any configuration X
with d+1 points in a common hyperplane. Other usual conditions for general
position can be expressed similarly.



