@

BASIC / Apple I

A Programming Guide

ALLEN B. TUCKER, JR.

Computer Science Program
Georgetown University

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

“Apple” is a registered trademark of Apple Computer, Inc.

This book is a tutorial guide to Apple BASIC, not a formal specification of the software as delivered to the
buyer now or in the future software revisions. Apple Computet, Inc. makes no warranties with respect to this
book or to its accuracy in describing any version of the Apple BASIC software product.

Copyright © 1983 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Tucker, Allen B.
BASIC/Apple I1.

(Apple programming series)

Includes index.

1. Apple II (Computer}—Programming. 2. Basic
(Computer program language) 1. Title. II. Title:
_ B.A.S.LC./Apple II. III. Title: BASIC/Apple 2.
IV. Title: B.A.S.1.C./Apple 2. V. Title: BASIC/Apple
two. VI, Title: B.A.S.I.C./Apple two. VII. Series.
Qa76.8.A662T84 1983 001.64'2 83-6097
ISBN (-03-061769-3

Printed in the United States of America
345 039 987654321
CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

Preface

BAGSIC has, for many years, been a primary tool for teaching concepts of programming.
It was designed specifically for this purpose and has become implemented on a wide
variety of mini- and microcomputers. Although BASIC is the most common language,
by far, in this class of computing, it has many dialects. That is, the BASIC language
which is available for the Apple computer has some important features that distinguish it
from, say, the BASIC language which is available for the PDP-11 computer.

The purpose of this book is to provide a unified introduction to programming and
BASIC, from the viewpoint of the Apple BASIC system, known also as “Applesoft.”
This particular system has become very popular in recent years. We hope that this book
will reach the wide variety of interests represented by those who use Apple computers.
This book encourages self-paced learning and frequent reinforcement of concepts by
hands-on programming lab exercises.

These lab exercises are grouped into three different subject areas, which we call
business, math/science, and general. They are organized so that the reader may consoli-
date his or her understanding of any particular programming concept by choosing a lab
exercise in a subject area appropriate to his or her own interests. For instance, LABOS
tests the reader’s mastery of elementary loops, using the IF and GO TO statements. The
reader may choose among LABOS5B (the business problem), LABO5M (the math/science
problem), or LABO5G (the general problem) to demonstrate that mastery. LABO5B asks
for a program that prints an interest payment table, LABOSM asks for a program that
prints a list of factorials, and LABOSG asks for a program that averages n numbers. All
three require an elementary loop.

This book also reflects our firm belief that a language is best taught by first
introducing a subset that will allow the reader to solve several elementary problems and
master basic programming concepts. We have defined a subset of BASIC and dubbed it
SSB, for “Six Statement BASIC.” The six statements of SSB are fully introduced and
illustrated in Chapter 2 and are also summarized in Appendix G at the end of the book for
easy reference.

We also believe that any complete introduction to programming should provide a
selection of programming problems and topics that truly reflects the variety of ways in
which computers are being used today. To satisfy this requirement, we have collected 60

vii

viii Preface

different programming lab problems (20 in each of the aforementioned subject areas). Of
these, LABO1 through LABOG test essential programming skills and features of the SSB
subset language. LABO7 through LAB20 are individually associated with the following
topics:

* Arrays

* Subprograms

* Formatted input/output and graphics
* Cross-tabulation and statistics

* Simulation of board games

+ File processing

* Natural-language text processing

Thus, the lab problems provide a most varied and representative selection of computer
applications for the uninitiated reader. This broad selection also serves to demonstrate
the versatility of BASIC as a programming language.

The individual chapters should be covered in order. LABO1 through LABO6 should
be done while covering Chapter 2, while LABO7 through LAB20 are keyed to individual
Chapters 4 through 9 in the following manner:

Chapter Lab

4 Simple Arrays 07-09
5 Functions and Procedures 10-12
6 Input/Output Options and Graphics 13, 14
7 Multidimensional Arrays 15, 16
8 Files and Records 17, 18
9 Character Strings 19, 20

There are also exercises, for drill and practice with different elements of BASIC
syntax and program tracing, at appropriate points in the book. Answers to many of these
exercises are provided in Appendix F. No answers are provided for the lab problems
themselves, although helpful hints are given with some.

Most texts which introduce BASIC tend to avoid any hardware-specific details,
leaving the reader to learn for himself or herself the extensions and idiosyncrasies of a
particular BASIC system. We take a different point of view on this matter. To properly
introduce program development, which is the main subject of Chapters 1 and 3, we
cannot avoid system-dependent features, such as “how to change a line of program text.”
Thus, we have integrated all aspects of creating and modifying a BASIC program on the
Apple computer into our discussions of program development. Similarly, we have
included topics such as “how to implement random file access” in the discussion of file
processing in Chapter 8, so that the reader will appreciate this very important pro-

Preface ix

gramming technique and see how it is done in Apple BASIC. In this, our reliance on
peculiarities of the Apple system is again unavoidable. Thus, unlike most texts, we are
strongly committed to the Apple version of BASIC; readers who might use this text with
other versions should thus beware of the differences.

We assume without further mention that the reader knows how to turn on the Apple
computer and mount the proper diskettes when they are needed. These operations, as
well as the various utility programs that appear on the “‘system master diskette,” are easy
to understand and will not be belabored herein.

Before starting this project, I had just finished a similar book entitled Apple Pascal.
Then I questioned whether BASIC could even be taught in a way that encouraged good
programming style—it seemed to be just too primitive as a language to accomplish
anything “useful” or “literate.” Now, having done this book, I am not so sure. Granted,
Apple BASIC does not contain the fine control structures of Pascal, such as WHILE and
IF-THEN-ELSE statements, but good programming style can still be practiced using
BASIC as a vehicle. I hope that this book will help to promote that idea.

Finally, I am grateful to the many persons who contributed to this book’s develop-
ment. The reviewers, especially Ray Geremia and Monte Johnson, deserve credit for
helping improve the manuscript from its earlier versions. My students continually revive
and refine the teaching and learning methodology that motivated the book in the first
place. My family—Maida, Jenny, and Brian—are a constant source of joy and love; they
deserve my thanks for putting up with “another textbook project.” (No, this is not dad’s
last book!)

Allen B. Tucker, Jr.

Contents

Preface

THE COMPUTING PROCESS

1.1
1.2
1.3
1.4
1.5
1.6

Apple Computer Organization

Programs

Program Development: An Overview

Execution Dynamics: A Simple Annotated Example
Preparing a BASIC Program for the Apple
Running a BASIC Program

LABOO: Sum of Two Numbers

SIX STATEMENT BASIC

2.1
2.2

2.3

24

2.5

Complete BASIC Programs: The END Statement

Data Types, Values, and Variables

Exercises 2.2

Elementary Input/Output: The INPUT and PRINT Statements
LABO1B: Compute Gross Pay

LABOIM: Acceleration Problem

LABO1G: Exam Score Average

L.LAB02B: Bank Balance Problem

LABO2M: Convert to Metric

LABO2G: Reverse Order

Expressions, Standard Functions, and the Assignment Statement
Exercises 2.4

LABO3B: Tax Calculation

LABO3M: Roots of a Quadratic Equation

LABO03G: Cost of a Trip

Elementary Loops: IF and GO TO Statements

Exercises 2.5

LABO04B: Electric Bill

vii

S W o~

18

18
19
21
22
27
28
29
30
31
32
33
37
40
41
42
43
48
54

xi

LABO4M: Area of a Triangle

LABO4G: Grass Seed

LABOS5B: Interest Repayment

LABOSM: Factorials

LABO05G: Maximum and Minimum
LABO6B: Checking Account Transactions
LABO6M: Prime Numbers

LABO06G: Count Significant Decimal Places

3 PROGRAM DEVELOPMENT, ERROR CORRECTION,
AND MAINTENANCE

3.1 Top-down Program Development

3.2 Syntax Error Detection and Correction

3.3 Logic Error Detection and Correction

3.4 Additional Program Development Commands
Exercises

4 SIMPLE ARRAYS

4.1 Array Declaration and Reference
4.2 Array Input, Output, and Arithmetic
4.3 Additional Control Structures: FOR and NEXT
4.4 An Example: Tabulation of Test Scores
Exercises
LABO7B: Inventory Update
LABO7M: Inner Product
LABO7G: Change Maker
LABOSB: Bank Accounts
LABO8M: Simple Regression
LABO8G: Bubble Sort
LABOQ9B: Sales Commissions
LABO9M: Monotone Sequences
LABO9G: Array Search

5 SUBROUTINES AND FUNCTIONS

5.1 Subroutine Definition and Invocation

5.2 Functions

5.3 Sample Subroutines and Functions
Exercises
LAB10B: Distance Calculation
LAB10M: Random-number Generation

Contents

55
56
57
58
59
60
61
62

63

68
73
79
81

82

84
85
88
90
95
96
98
99
100
101
103
104
105
106

107

110
112
113
120
121
123

Contents xiii

LABI10G: Binary Search 125
LAB11B: Automatic Test Scoring 127
LAB11G: Integer Remainder 129
LABI12M: Fibonacci Sequence 130
LAB12G: Date Conversion 131

6 INPUT/OUTPUT OPTIONS AND GRAPHICS 132
6.1 Additional Input and Print Options 132
6.2 Design of Reports 135
6.3 Commands for Graphics 137
6.4 Two Graphics Examples 147
Exercises 153
LAB13B: Mortgage Loan Repayment Tables 155
LAB13M: Convert Binary to Decimal 156
LAB13G: Calculating Wind Chill Factors 157
LAB14B: Bar Charts 159
LAB14M: Pascal’s Triangle 160
LABI14G: Calendar Print 161

7 MULTIDIMENSIONAL ARRAYS 163
7.1 Cross-tabulation and Elementary Statistics 165
7.2 Matrix Calculations 168
7.3 Simulating Board Games 171
Exercises 176
LAB15B: Market Survey Tabulation 177
LABI15M: Game of Life 179
LAB15G: Bingo 181
LAB16B: Class Scheduling 182
LAB16M: Gaussian Elimination 184
LAB16G: Magic Squares 187

8 FILE HANDLING 189
8.1 Defining Sequential Files 190
8.2 Creating and Retrieving Data from Sequential Files 191
8.3 Random Files 196
8.4 Additional File I/O Facilities 199
Exercises 202
LAB17B: Random File Update 204
LAB17M: Random Sampling 205
LAB18B: Two-file Merge 206

LAB18G: Sequence Checker 207

Xiv

9 CHARACTER STRINGS AND THEIR USES

9.1 Variable Names, Assignment, Comparison, and Input/Output
9.2 String Functions and Operators
9.3 Word and Sentence Recognition

Exercises

LAB19B: Mailing Lists

LAB19M: Cryptograms

LAB19G: The Palindrome Problem

LAB20B: Personalized Form Letters

LAB20M: Roman Numerals

LAB20G: Count Words and Sentences

APPENDIXES

Apple BASIC Built-in Functions

Apple BASIC Commands

Apple BASIC DOS and Other Keyboard Commands
Apple BASIC Syntax

Apple BASIC Error Messages

Answers to Selected Exercises

Summary of SSB Statements

Apple BASIC Characters and Their Keyboard and ASCII
Representations

ol NN - ol g

Index

Contents

209
211
213
217
219
221
222
223
224
226

227
229
234
237
240
242
246

248

251

Chapter 1

The Computing
Process

Computers have a “static” aspect and a “dynamic” aspect. The static aspect consists of
the components, whereas the dynamic aspect represents the actual movement and
manipulaton of data that occurs when the components are activated. Both the static
aspect and the dynamic aspect of computers must be clearly understood in order to
master the art of programming itself.

1.1 Apple Computer Organization

We first describe the static aspect of computers, which is known as computer organiza-
tion. Five general components comprise the organization of a computer, as pictured in
Figure 1.1.

CPU
R ———]
|[control I
| vy % |
input ’% memory } > output
| ::)
I 2 |
| arithmetic/ |
| logic |
L |

Figure 1.1 The Components of a Computer.

2 BASIC/Apple I

In the center of Figure 1.1 is the computer’s central processing unit (CPU).
Leading into the CPU from the left is the input, and leading out to the right is the output.
The CPU itself has three parts: the memory, the control, and the arithmetic/logic
circuitry.

The arrows that connect these components denote paths through which information
can flow. That is, information can flow from the input to the memory, from the memory
to the output, and in either direction between memory, control, and arithmetic/logic.

Figure 1.2 shows a picture of an Apple computer with its five basic components
identified. Here, the reader can get an idea of what these components actually look
like.

Output
(display screen)

Input/Output
g!ill ’ o {diskette drives)

Output
(ptinter)

Input
(keyboard)

Figure 1.2 Components of an Apple Computer. (Courtesy of Apple Computer Inc.)

The memory of a computer holds two kinds of information, the program and some
data. The program itself consists of a series of instructions that tells exactly what steps to
perform. These instructions are actually carried out, or “executed,” by the control unit.
Some of the instructions tell the control to transfer information from the input to the
memory; this is known as a “read” operation. Other instructions tell the control to
transfer information from the memory to the output; this is known as a “write” operation.
Still others tell the control to perform an arithmetic operation (e.g., addition) or a

The Computing Process 3

comparison of two data values (e.g., to see which is greater). These kinds of operations
are actually carried out by the arithmetic/logic part of the CPU.

Now, the actual input and output information can be represented in any of several
different “computer-readable” media, including punched cards, an interactive terminal,
video display, printed paper, magnetic tape, and magnetic disk. Shown with the Apple
in Figure 1.2 are two magnetic disk units, an interactive terminal, video display, and a
line printer. Each magnetic disk unit holds one cartridge, called a diskette (Figure 1.3),
which may contain programs and data. Diskettes may be interchangeably mounted on
the disk drive, but at any one time only one diskette may be present.

Figure 1.3 A Diskette Storage Cartridge.

1.2 Programs

The program is a sequence of instructions which, when executed by the control unit,
defines exactly what should be done with the input data in order to produce a particular
output. That is, the program specifies the dynamic aspect of the computer. Without the
program, the components described in the foregoing section would be just a passive
collection of hardware.

Functionally, the program is like a recipe; followed precisely, the recipe will yield
the desired result. Yet, a program must be precisely and, sometimes, excruciatingly
specified in order to fully define the task to be performed. Also, like a recipe, the
program must be written in a very exact syntactic form, in order to be understood and
properly executed. This form is known as the programming language.

There are many different programming languages in use today, such as ALGOL,
COBOL, FORTRAN, PL/I, APL, BASIC, LISP, and Pascal. Each has its special

4 BASIC/Apple 11

strengths in one of the wide variety of application areas where programmers are
working. In this book, we shall teach the programming language BASIC because it is
widely known, permits good programming style, is easily taught and learned, and can be
effectively used in the various programming situations that occur in mathematics,
science, business, the humanities, government, and personal computing.

Because BASIC has many different kinds of statements (see Appendix B), we shall
first teach an elementary part of it, so that the reader may master simple programming
techniques before proceeding to advanced material. We have dubbed that elementary
part as “Six Statement BASIC,” or SSB for short; it is the subject of Chapter 2.
Additional BASIC features will be described, illustrated, and exercised in later chapters.

1.3 Program Development: An Overview

Although we teach the programming language BASIC, we have a far more important
purpose in this book: to introduce and teach the elements of program development. 1t is
one thing to follow a recipe successfully and end up with an edible cake, but it is quite
another to design and correctly describe the recipe in the first place.

More precisely, program development has as its purpose to design and demonstrate
the correct functioning of a (BASIC) program that carries out a prescribed task.
Examples of typical “prescribed tasks™ are the following:

1. Add two numbers and display the resulting sum, given the original two num-
bers.

2. Compute the average of all three tests taken by each student in a class of 235,
given the original 75 individual test scores (three per student).

3. Translate a text from Spanish into English, given the original Spanish text.

As the reader can see, these examples range in difficulty from trivial to complex. Thus is
the domain of program development. In this book, most of the program development
tasks are like that of Example 2: not trivial but achievable in a reasonable amount of
time.

We prescribe these tasks as so-called labs, numbered LABOO through LAB20.
LABOO will be presented, programmed, and discussed in its entirety in this chapter; in
fact, LABOO is Example 1 given above. The labs are organized into three subject-area
groups; business, math/science, and general. Readers are encouraged to select labs that
correspond with their subject-area interests. Labs are coordinated so that, for instance,
LABI13B (i.e., a business task) and LAB13M (i.e., a math/science task) exercise the

The Computing Process 5

same BASIC features and program development techniques. (The suffix B, M, or G
affixed to the LAB number identifies its subject area as business, math/science, or
general, respectively.)

Returning to the question of program development, this process can be subdivided
into the following sequence of distinct steps:

Problem specification

Algorithm design

Program coding

Program preparation

Program execution

Program diagnosis and error correction

AN e

The following sections describe each of these steps, using Example 1 for illustra-
tion.

Problem Specification

A clear and concise statement of the programming problem to be solved is, of course, a
prerequisite to the development of the program itself. Recall the problem statement of
Example 1:

Add two numbers together and display the resulting sum, given the original
two numbers.

There is a kind of innate tedium in any such problem statement, which is due to the
requirement for precision and completeness. The statement must always be reflective of
the general capabilities and limitations of computers and programming. Moreover, the
problem statement must be totally clear and fully comprehensible to the person who will
write the program.

In this book, the programming problem statements are already developed, in the
form of LABOO through LAB20. Our purpose here is to teach programming and
problem-solving skills rather than to teach the development of problem statements
themselves. The area of computing in which problem statements are developed is known
as systems analysis and design.

One element of a good problem statement is that it not only portrays the program-
ming task to be performed (e.g., “add two numbers” in Example 1) but also identifies the
input data (e.g., “given the original two numbers™) and the desired output (e.g., “display
the resulting sum™).

6 BASIC/Apple 11

Algorithm Design

Here, the programmer translates the problem statement into a precise description of how
the computer program will solve the problem. In general, algorithm* design begins with
asketch, in English, of the sequence of steps that the computer should follow to solve the
problem. At this point, the programmer identifies all memory locations, known as
variables, that are necessary for the program to perform properly. A memory location
can be visualized as a place within the computer’s memory which can hold a single data
value, such as a number or an alphabetic character. A variable can be visualized as a
memory location which is associated (by the program) with a unique name, such as A or
SUM. For instance, an algorithm design for Example 1 can be given as follows:

1. Identify A and B as the variables which will contain the two numbers to be added
and SUM as the variable which will contain their sum, as shown in the following
picture of memory:

memory

SUM

2. The sequence of steps required to solve this problem is:
a. Transfer the two numbers from the input to variables A and B, respectively.
b. Add the values of A and B, leaving the result in SUM.
c. Transfer the value of SUM to the output.

An algorithm design always presumes certain overall operational or mechanical charac-
teristics of computer programs:

*The term algorithm means “a precise description of a computing task which will terminate in a finite number
of steps.” That description can be done in any suitable language, such as English, or any programming
language (e.g.. Pascal. FORTRAN, COBOL, PL/1, BASIC). When done in a programming language, the
algorithm is known as a program.

The Computing Process 7

* The input values must be brought into specific memory locations, or variables,
before any arithmetic or other operations can be performed with them.

* The computer’s control unit carries out the individual steps of a program in the
order in which they are written.

* The result(s) of a program must be transferred from memory to the output in order
for it to be displayed. The memory is an electronic medium, hidden from view.
The input and output (e.g., a terminal screen or a printer) provide visible
representations for data values and results.

To illustrate, the following diagram shows a complete configuration of input data,
program, variables, and output immediately before steps (a), (b), and (c) of the
algorithm are carried out by the computer’s control unit:

memory

a. Transfer the two numbers from
the input to A and B.

b. Add the values of A and B,
leaving the result in SUM.

input ¢. Transfer the value of output

17 SUM to the output.
31
A
B
SUM

Here, the algorithm is given 17 and 31 as two sample input values. In general, an
algorithm is designed to handle any input that is suitable to the problem statement (e.g.,
any pair of numbers, in the case of Example 1).

After the control has carried out all three steps specified by the algorithm, the
resulting configuration will be as shown below:

memory
a. Transfer...
input b. Add... output
c¢. Transfer. ..
;Z A 17 48
B _31
SUM _48

