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Preface

Fluctuations in scattered light constitute some of the most familiar natural
optical phenomena, including the twinkling of starlight, the glittering of
sunlight on a rippled water surface, and the shimmering of distant objects
on a hot day. These effects are geometrical in origin, being a consequence
of refraction by large-scale random variations in refractive index. Fluctu-
ations of this kind may be caused by density variations within a propaga-
tion medium, such as the atmosphere, or by roughness of the interface
between media having differing dielectric constants. Although significant
dispersion may also be observed (for example, in the case of the colorful
twinkling of a star low in the sky), for the most part they are white light
optical effects that are independent of wavelength within the visible spec-
trum. With the advent of the laser, a new range of coherent-light scattering
phenomena became visible. In particular, the random interference effect
that has come to be known as laser speckle commonly occurs in laboratory
laser light scattering experiments (Figure 0.1). Indeed, laser light scattering
generates many beautiful diffraction, interference, and geometrical optics
effects that can be observed with the naked eye. Figure 0.2 shows the effect
of scattering multifrequency laser light from a piece of ground glass in the
laboratory. Figure 0.3 shows the optical intensity pattern obtained when
laser light is passed through turbulent air rising above a heating element,
and is rather reminiscent of the pattern sometimes observed on the floor
of a swimming pool.

It is important to recognize that a similar range of effects is generated at
other frequencies of the electromagnetic spectrum and in the scattering of
sound waves. These can and have been measured, but of course they cannot
be seen with the naked eye. However, they obviously contain information
about the scattering object and they also limit the performance of sensing
and communication systems. One familiar example of this is the fading of
shortwave radio reception due to ionospheric fluctuations. Many early the-
oretical results were derived as a consequence of the observation of fluctu-
ations at radio and radar wavelengths. For example, an early theoretical
description of random interference effects was developed to explain the
fluctuating radar return from raindrops twenty years before the visual
appearance of the equivalent laser-generated phenomenon gave rise to the
term “speckle.” It was soon recognized that intensity patterns of the form
shown in Figure 0.1 were manifestations of Gaussian noise, a well-known
statistical model that is readily characterized and amenable to calculation.
Unfortunately, in practice the more complicated radiation patterns illustrated
in Figure 0.2 and Figure 0.3 are common and the Gaussian noise model



FIGURE 0.1
Random interference pattern generated when laser light is scattered by ground glass. (See color
insert following page 14.)

cannot adequately describe these. The aim of this book is to provide a
practical guide to the phenomenology, mathematics, and simulation of non-
Gaussian noise models and how they may be used to characterize the sta-
tistics of scattered waves.

The plan of the book is as follows: After Chapter 1, in which the statistical
tools and formalism are established, Chapter 2 reviews the properties of
Gaussian noise including some lesser known results on the phase statistics.
Chapter 3 describes processes derived from Gaussian Noise that are com-
monly encountered, while Chapter 4 discusses deviation from Gaussian
statistics in the context of the random walk model for discrete scattering
centers. The random phase-changing screen is a scattering system that intro-
duces random distortions into an incident wave front. It provides an



FIGURE 0.2
The effect of focusing multifrequency laser light onto a small area of the same kind of scatterer
as in Figure 0.1. (See color insert following page 14.)

excellent model for a wide variety of continuum scattering systems, ranging
from ionospheric scattering of radio waves to light scattering from rough
surfaces, and is a valuable aid to understanding the phenomenology in non-
Gaussian scattering regimes. Chapter 5 through Chapter 8 provides an over-
view of the predictions of this ubiquitous model, making various assump-
tions for the properties of the initial phase distortion. Chapter 9 addresses
aspects of propagation through an extended medium while Chapter 10 dis-
cusses some multiple scattering effects. The scattering of vector waves and
polarization fluctuations are discussed in Chapter 11. Chapter 12 is devoted
to a discussion of perhaps the most widely used non-Gaussian model: K-
distributed noise. Chapter 13 outlines some of the practical limitations
encountered in experimental measurement and how they affect the interpre-
tation of results, detection, and measurement accuracy. Finally, Chapter 14
will describe techniques for numerical simulation.



FIGURE 0.3
Intensity pattern obtained when laser light is passed through air convecting above a heating
element. (See color insert following page 14.)
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1

Statistical Preliminaries

1.1 Introduction

The purpose of this chapter is to provide a brief introduction to the statistical
quantities and notation that will be used in the remainder of the book. There
are many excellent texts on probability theory, noise, and stochastic pro-
cesses, covering the subjects at various depths and levels of sophistication.
The treatment here is aimed at a nonspecialist user community and we shall
present a straightforward engineering exposition that covers only the essen-
tials required to understand the principles, significance, and application of
the statistical models that are described in the following chapters. A more
comprehensive treatment, taking the same general approach, is to be found
in the book An Introduction to the Theory of Random Signals and Noise by
Davenport and Root [1], while for the ultimate encyclopedic treatment the
reader is referred to An Introduction to Statistical Communication Theory by
Middleton [2]. Optical engineers may find the treatment given in the excel-
lent treatise Statistical Optics by Goodman [3] more to their taste.

1.2 Random Variables

We start with the description of a simple one-dimensional signal V(t) (Figure
1.1) that is a random function of the time ¢, that is, a random process. Fluc-
tuations in the value of V may be the result of many rapidly changing
underlying variables or may be the chaotic outcome of a complicated system
of nonlinear differential equations. Although the functional dependence of
V on time may be random, the result of a measurement of V can be expressed
statistically in terms of the single-time probability density function (pdf)
P(V(t)) which defines the likelihood of obtaining a value V at time t. Similarly,
the double-time density P(V,(t,),V,(t,)) defines the joint probability of obtain-
ing the values V, and V, by making measurements at times ¢, and ¢,



