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Preface

The book gives the theory of stochastic equations (including ordinary differential equa-
tions, partial differential equations, boundary-value problems, and integral equations) in
terms of the functional analysis. The developed approach yields exact solutions to stochas-
tic problems for a number of models of fluctuating parameters among which are telegra-
pher’s and generalized telegrapher’s processes, Markovian processes with a finite number
of states, Gaussian Markovian processes, and functions of the above processes. Asymptotic
methods of analyzing stochastic dynamic systems, such as delta-correlated random pro-
cess (field) approximation and diffusion approximation are also considered. These methods
are used to describe the coherent phenomena in stochastic systems (particle and passive
tracer clustering in random velocity field, dynamic localization of plane waves in randomly
layered media, and caustic structure formation in multidimensional random media).

The book is destined for scientists dealing with stochastic dynamic systems in different
arcas, such as hydrodynamics, acoustics, radio wave physics, theoretical and mathematical
physics, and applied mathematics, and can be useful for senior and postgraduate students.

Now, a few words are due on the structure of the text. The book is in five parts.

The first part may be viewed as an introductory text. It takes up a few typical physical
problems to discuss their solutions obtained under random perturbations of parameters
affecting the system behavior. More detailed formulations of these problems and relevant
statistical analysis may be found in other parts of the book.

The second part is devoted to the general theory of statistical analysis of dynamic
systems with fluctuating parameters described by differential and integral equations. This
theory is illustrated by analyzing specific dynamic systems.

The third part treats asymptotic methods of statistical analysis such as the delta-
correlated random process (field) approximation and diffusion approximation.

The fourth part deals with analysis of specific physical problems associated with coher-
ent phenomena. These are clustering and diffusion of particles and passive ingredients in a
random velocity field, dynamic localization of plane waves propagating in layered random
media, and formation of caustics by waves propagating in random multidimensional media.
These phenomena are described by ordinary differential equations and partial differential
equations. Each of these formulations splits into many separate problems of individual
physical interest.

In order to avoid crowding the book by mathematical niceties, it is appended by the
fifth part that consists of three appendixes presenting detailed derivations of some mathe-
matical expressions used in the text. Specifically, they give a definition and some rules to
calculate variational derivatives; they discuss the properties of wavefield factorization in a
homogeneous space and in layered media which drastically simplify analysis of statistical
problems. In these appendixes, we also discuss a derivation of the method of imbedding
that offers a possibility of reformulating boundary-value wave problems into initial value
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problems with respect to auxiliary variables.

It is worth noting that purcly mathematical and physical papers devoted to consid-
ered issues run into thousands. It would be physically impossible to give an exhaustive
bibliography. Therefore, in this book we confine ourselves to referencing those papers
which are used or discussed in this book and also recent review papers and with extensive
bibliography on the subject.

V. 1. Klyatskin

Moscow



Mephistopheles (about algebra)

I want to warn you:
careful you should
Be with this science
which is very tricky.
It can involve your brain into the chaos
of vain unnecessary transformations.
If you don’t manage
to embrace its basis,

You won’t be able indexes to differ.

What’s important -
deepen into symbols
And, having mastered then,
vou bravely step
Onto the path, which leads into the Kingdom

of Formulas, eternal and exact.

Kurd Lasswitz, Prost!,
www. gutenberg2000.de/lasswitz/prost /prost.htm
Translated by Alla Parollo.



Introduction

Different areas of physics pose statistical problems in ever-greater numbers.  Apart
from issues traditionally obtained in statistical physics, many applications call for including
fluctuation effects into consideration. While fluctuations may stem from different sources
(such as thermal noise, instability, and turbulence), methods used to treat them are very
similar. In many cases, the statistical nature of fluctuations may be deemed known (cither
from physical considerations or from problem formulation) and the physical processes may
be modeled by differential, integro-differential or integral equations.

Today the most powerful tools used to tackle compli .ated statistical problemns are the
Markov theory of random processes and the theory of diffusion type processes evolved
from Brownian motion theory. Mathematical aspects underlying these theories and their
applications have been treated extensively in academic literature and textbooks (|63]), and
therefore we will not dwell on these issues in this treatise.

€

We will consider a statistical theory of dynamic and wave systems with fluctuating
parameters. These systems can be described by ordinary differential equations, partial
differential equations, integro-differential equations and integral equations. A popular
way to solve such systems is by obtaining a closed system of equations for statistical
characteristics of such systems to study their solutions as comprehensively as possible.

We note that often wave problems are boundary-value problems. When this is the
case, one may resort to the imbedding method to reformulate the equations at hand to
initial-value problems, thus considerably simplifying the statistical analysis [136].

We shall dwell in depth on dynamic systems whose fluctuating parameters are Gaussian
random processes (fields), although what we present in this book is a general theory valid
for fluctuating parameters of any nature.

The purpose of this book is to demonstrate how different physical problems described
by stochastic equations may be solved on the base of a general approach. This treatient
reveals interesting similarities between different physical problems.

Examples of specific physical systems outlined below are mainly borrowed from sta-
tistical hydrodynamics, statistical radio wave physics and acoustics because of author’s
research in these fields. However, similar problems and solution techniques occur in such

areas as plasma physics, solid-state physics, magnetofluid dynamics to name a few.

In stochastic problems with fluctuating parameters, the variables are functions. It
would be natural therefore to resort to functional methods for their analysis. We will use
a functional method devised by Novikov [255] for Gaussian fluctuations of parameters in
a turbulence theory and developed by the author of this book [132], [134]-[136] for the
general case of dynamic systems and fluctuating parameters of arbitrary nature.

However, only a few dynamic systems lend themselves to analysis yielding solutions
in a general form. Tt proved to be more efficient to use an asymptotic method where the
statistical characteristics of dynamic problem solutions are expanded in powers of a small
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xvi Introduction

parameter which is essentially a ratio of the random impact’s correlation time to the time
of observation or to other characteristic time scale of the problem (in some cases, these
may be spatial rather than temporal scales). This method is essentially a generalization
of the theory of Brownian motion. It is termed the delta-correlated random process (field)

approzimation. In Brownian motion theory, this approximation is consistent with a model
obtained by neglecting the time between random collisions as compared to all other time
scales.

For dynamic systems described by ordinary differential stochastic equations with Gaus-
sian fluctuations of parameters, this method leads to a Markovian problem solving model,
and the respective equation for transition probability density has the form of the Fokker
Planck equation. In this book, we will consider in depth the methods of analysis available
for this equation and its boundary conditions. We will analyze solutions and validity con-
ditions by way of integral transformations. In more complicated problems described by
partial differential equations, this method leads to a generalized equation of Fokker-Planck
type in which variables are the derivatives of the solution’s characteristic functional. For
dynamic problems with non-Gaussian fluctuations of parameters, this method also yields
Markovian type solutions. Under the circumstances, the probability deusity of respective
dynamic stochastic equations satisfies a closed operator equation. For example, systems
with parameters fluctuating in a Poisson profile are converted into the Kolmogorov- Feller
type of integro-differential equations.

In physical investigations, Fokker-Planck and similar equations arc usually set up from
rule of thumb considerations, and dynamic equations are invoked only to calculate the
coefficients of these equations. This approach is inconsistent, generally speaking. Indeed,
the statistical problem is completely defined by dynamic equations and assumptions on the
statistics of random impacts. For example, the Fokker-Planck equation must be a logical
sequence of the dynamic equations and some assumptions on the character of random
impacts. It is clear that not all problems lend themselves for reducing to a Fokker-Planck
equation. The functional approach allows one to derive a Fokker—Planck equation from
the problem’s dynamic equation along with its applicability conditions.

For a certain class of random processes (Markovian telegrapher’s processes, Gaussian
Markovian process and the like), the developed functional approach also vields closed
equations for the solution probability density with allowance for a finite correlation time
of random interactions.

For processes with Gaussian fluctuations of parameters, one may construct a better
physical approximation than the delta-correlated random process (field) approximation,
the diffusion appro

nation that allows for finiteness of correlation time radius. In this
approximation, the solution is Markovian and its applicability condition has transparent
physical meaning, namely, the statistical effects should be small within the correlation time
of fluctuating parameters. This book treats these issues in depth from a general standpoint
and for some specific physical applications.

In recent time, the interest of both theoreticians and experimenters has been attracted
to relation of the behavior of average statistical characteristics of a problem solution with
the behavior of the solution in certain happenings (realizations). This is especially im-
portant for geophysical problems related to the atmosphere and ocean where, generally
speaking, a respective averaging ensemble is absent and experimenters, as a rule, have to
do with individual observations.

Seeking solutions to dynamic problems for these specific realizations of medium pa-
rameters is almost hopeless due to extreme mathematical complexity of these problems.
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At the same time, researchers are interested in main characteristics of these phenomena
without much need to know specific details. Therefore, the idea to use a well developed
approach to random processes and fields based on ensemble averages rather than separate
observations proved to be very fruitful. By way of example, almost all physical problems
of atmosphere and ocean to some extent are treated by statistical analysis.

Randomness in medium parameters gives rise to a stochastic behavior of physical fields.
Individual samples of scalar two-dimensional fields p (R, t), R = (x,y), say, recall a rough
mountainous terrain with randomly scattered peaks, troughs, ridges and saddles. Common
methods of statistical averaging (computing mean-type averages — {p (R, 1)), space-time
correlation function — (p (R, t) p(R/,t')) etc., where (...) implies averaging over an en-
semble of random parameter samples) smooth the qualitative features of specific samples.
Frequently, these statistical characteristics have nothing in common with the behavior of
specific samples, and at first glance may even seem to be at variance with them. For exam-
ple, the statistical averaging over all observations makes the field of average concentration
of a passive tracer in a random velocity field ever more smooth, whereas each its realiza-
tion sample tends to be more irregular in space due to mixture of areas with substantially
different concentrations.

Thus, these types of statistical average usually characterize 'global” space-time dimen-
sions of the area with stochastic processes but tell no details about the process behavior
inside the area. For this case, details heavily depend on the velocity field pattern, specifi-
cally, on whether it is divergent or solenoidal. Thus, the first case will show with the total
probability that clusters will be formed, i.e. compact arcas of enhanced concentration of
tracer surrounded by vast arcas of low-concentration tracer. In the circumstances, all sta-
tistical moments of the distance between the particles will grow with time exponentially;
that is, on average, a statistical recession of particles will take place.

In a similar way, in case of waves propagating in random media, an exponential spread
of the ra

s will take place on average; but simultancously, with the total probability,
caustics will form at finite distances. One more example to illustrate this point is the
dynamic localization of plane waves in layered randomly inhomogeneous media. In this
phenomenon, the wavefield intensity exponentially decays inward the medium with the
probability equal to unity when the wave is incident on the half-space of such a medium,
while all statistical moments increase exponentially with distance from the boundary of
the medium.

These physical processes and phenomena occurring with the probability equal to unity
will be referred to as coherent processes and phenomena [157|. This type of statistical
coherence may be viewed as some organization of the complex dynamic system, and re-
trieval of its statistically stable characteristics is similar to the concept of coherence as

self-organization of multicomponent systems that evolve from the random interactions of
their elements [254

. In the general case, it is rather difficult to say whether or not the
phenomenon occurs with the probability equal to unity. However, for a number of applica-
tions amenable to treatment with the simple models of fluctuating parameters, this may be
handled by analytical means. In other cases, one may verify this by performing numerical
modeling experiments or analyzing experimental findings.

The complete statistic (say, the whole body of all n-point space-time moment func-
tions), would undoubtedly contain all the information about the investigated dynamic
system. In practice, however, one may succeed only in studying the simplest statistical
characteristics associated mainly with one-time and one-point probability distributions.
It would be reasonable to ask how with these statistics on hand one would look into the
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quantitative and qualitative behavior of some system happenings?

This question is answered by methods of statistical topography. These methods were
highlighted by [319], who seems to had coined this term. Statistical topography yields a
different philosophy of statistical analysis of dynamic stochastic systems, which may prove
useful for experimenters planning a statistical processing of experimental data. These
issues are treated in depths in this book.
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