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LINEAR EQUATIONS OF MATHEMATICAL PHYSICS



PREFACE

This book is designed as a text and reference for mathematicians,
physicists, and engineers who need to solve problems of mathematical
physics or to use the mathematical principles involved in their applied or
basic research work.

The linear differential equations of mathematical physics constitute one
of the most extensive branches of analysis. A large number of monographs
and textbooks as well as almost innumerable periodical articles have been
“devoted to it. At the same time, this is a branch of analysis with many
ramifications interwoven with other branches of this subject and with
mathematics in general. In the arsenal of present-day mathematical tools,
we have topology and special functions, functional analysis and the classical
theory of functions of a complex variable, theory of functions of a real
variable, and approximation techniques. Mathematical physics is closely
connected both with the most abstract divisions of contemporary mathe-
matics and with the most concrete applications to the problems of physics
and technology.

Naturally, such a complex subject has resulted in different methods of
exposition. Together with the simple material contained in Chapters 1 to 4,
less elementary material is given in Chapters 5 and 9.

The present text follows more or less the usual construction of courses
in mathematical physics. Chapter 1 gives the overall properties of the
equations of mathematical physics, the reduction of the equations to
canonical form, and the classification of these equations. The Cauchy
problem is stated and some general remarks concerning the statement of
other boundary-value problems are made.

Chapter 2 discusses the basic problems leading to hyperbolic equations
and the solution of the basic problems for hyperbolic equations with two
independent variables. The problems associated with the solution of the
wave equation are treated in detail. The Fourier method is explained in
detail for equations with two or more independent variables. The most
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important facts concerning hyperbolic equations and systems of equations
of a more general form are presented.

Chapters 3 and 4 present the elementary facts concerning the equations
of Laplace, Poisson, and Helmholtz and their solutions. A great deal of
attention is given to the results obtained by the method of separation of
variables. Chapter 5 is devoted to more general equations (and systems of
equations) of the elliptic type. Elliptic equations with a small parameter
serving as coefficient of the highest derivatives are also studied in Chapter 5.

Chapter 6 takes up parabolic equations and systems of equatlons The
first five sections of this chapter deal with elementary mformatlon con-
cerning the heat-flow equation. The following sections of this chapter are
devoted to the general theory and are less elementary.

The remaining chapters of the book take the reader somewhat beyond
the usual courses in mathematical physics. Chapters 7 and 8 have similar
subjects: Chapter 7 deals with degenerate hyperbolic and elliptic equations
and Chapter 8 has to do with equations of mixed elliptic-hyperbolic type.
Equations of this type play a significant part in gas-dynamics, for example.

Chapter 9 is devoted to diffraction theory, which is of interest in con-_
nection with numerous applications. The problem is studied in detail for
the wave equation, Maxwell’s equations, and the dynamic equations of
elasticity theory. Certain less simple questions dealing with the theory of
propagation of waves are examined in this chapter.

The present book does not deal with the studies made in recent years
on the most general systems of partial differential equations. It seemed to
us that the theory of such systems is not yet sufﬁciently complete. We also
have omitted the numerous and important investigations on the spectra
of elliptic differential operators, such as, for example, the Schroedmger
operator.

S. G. MIKHLIN
Leningrad, Russia
June 1966
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CHAPTER |

The General Properties of Linear Partial
Dafferential Equations

1. Basic Goncepts and Definitions

A differential equation that contains, in addition to the independent variables
and the unknown function, one or more partial derivatives of the unknown
function is called a partial differential equation.

The highest order of any of the partial derivatives in the equation is the order
of the differential equation.

From a standpoint of mathematical physics, the most important and most
thoroughly studied equations are those of second order. In the case of two
independent variables, a second-order equation can be written in the following
general form:
8u ou 0’u ?u ?u 11
“ ox oy’ 0x2 oy? ox 8y) (1.

An equation is said to be linear if it is linear in the unknown function and all
its derivatives. A linear second-order equation with two independent variables
has the following general form:

o2%u

A(x,y) +2( y) + Clx y)

+ a(x, y) o © 4 b, ;v) % C ot olw, yue=f(x, ) (1.2)

where A(x, ), B(x, ), ---, ¢(x, ¥), and f(x, ¥) are given functions of the variables
x and y.

If f(x,v)=0, Equation (1.2) is said to be homogeneous; otherwise, it is
nonhomogeneous.

Let us consider an equation that is linear in the derivatives of highest order.
In the case of two independent variables, such an equation is of the form

—d)( ou a—’y‘) (1.3)

A ,
(=, y) "oy




2 PROPERTIES OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS

If the coefficients 4, B, and C depend not only on x and y but also on u, du/éx,
and 0u/dy, the equation is said to be quasilinear. A linear equation is a special
case of a quasilinear equation.

A second-order linear equation with # independent variables can be written
in the following general form:

n 2y n

ou
A B;— 1L Cu= A=Ay 1.4
le i76x¢3x1+i=1 ‘axﬂL u=f 1= Ay (1.4)

where the A, B;, C, and f are given functions of the # independent variables.

Let us consider a partial differential equation of order m. A function u defined
in some region D in the space of the independent variables is called a solution
or an integral of the given equation in the region D if throughout this region
the function u has continuous partial derivatives up to order m inclusively and
substitution of « into the original equation reduces that equation to an identity.

The requirement that the first m partial derivatives exist is often unjustified
from a physical, and sometimes even from a mathematical, point of view.
Therefore, in addition to the concept of a ““classical” solution that we have
just presented, the concept of a generalized solution of a partial differential
equation has been introduced.

We now give the simplest definition of a generalized solution, If there exists a
sequence of classical solutions of the given differential equation in D and if this
sequence converges uniformly to some function # in an arbitrary subregion in the
interior of the region D, this function u is said to be a generalized solution
of the given differential equation in the region D. The concept of a generalized
solution was introduced by S. L. Sobolev.

Consider a linear equation of order m in n independent variables, which we
denote by xi, x2, -+, x,. As before, we denote the unknown function by u.
By transposing the terms not containing the unknown to the right side of the
equation and leaving those terms with the unknown function and its derivatives
on the left, we reduce the given equation to the form

L[u] = f(x1, %3, -+, xn) (1.5)
If f=0, the equation is homogeneous and is of the form
L[u]=0 (1.6)

Sometimes, the square brackets are dropped and one writes simply Lu.

The symbol L[4] is called a linear differential operator operating on the
function .

Linear differential operators have the following two properties*:

* These properties in fact define the concept of linearity of operators.
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(1) A constant factor may be taken outside the symbol for the operator:
L[cu] = cL[u] (1.7)

(2) Application of the operator to the sum of two functions yields the sum of
the results obtained by applying the operator to the individual functions:

L[uy + ug)] = L{ug] + L[uz] (1.8)

For homogeneous equations:

(1) If u is a solution and C is a constant, the product Cu is also a solution.
(2) If w3 and wup are solutions, the sum #; + #3 is also a solution.

Property (2) can be extended to the sum of an arbitrary finite number of terms.
If we have an infinite sequence of solutions (), the series

Uy
1

-3
gk

is called a formal solution whether or not it converges. If the solutions #, are
classical solutions, if the series converges uniformly, and if the function repre-
senting its sum has partial derivatives of the necessary orders, this sum will be a
classical solution of Equation (1.6). If the series converges uniformly but its sum
does not have the necessary partial derivatives, this sum will be a generalized
solution of Equation (1.6).

If a classical solution #(x, o) is an integrable function of a parameter «, the
integral

f Co)u(x, o) doc

where C(«) is an arbitrary continuous function of « and the limits of integration
are independent of x, may be either a classical solution (if the integral converges
uniformly and has the necessary partial derivatives) or a generalized solution (if
the integral converges uniformly but does not have the necessary derivatives).

For nonhomogeneous equations:

(1) If u is a solution of a nonhomogeneous equation and v is a solution of the
corresponding homogeneous equation, the sum u - @ is a solution of the non-
homogeneous equation.

(2) If w is a solution of a nonhomogeneous equation whose right member is
/1 and if up is a solution of a nonhomogeneous equation (with the same left
member as the preceding equation) whose right member is fz, then u; 4 us is a
solution of the equation (still with the same left member) whose right member is
Ji+f2. This property can be extended to the sum of an arbitrary finite number
of terms.



4 PROPERTIES OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Consider the linear second-order differential operator

n

2
=3 Aysop+ 3Bt +Cu (19)

1,j=1 i=1

Suppose that the coefficient C is continuous in some region D, that the coefficients
B, are continuously differentiable, and that the coefficients A4;; and the function
are twice continuously differentiable. The operator
0%(A;5v) r 9(Bv)
i,j=1 ax',; 33(7] i=1 axi

1 Co (1.10)

is said to be the adjoint of the operator L. The original operator L is the adjoint

of the operator M.
If the operator L coincides with M, it is said to be self-adjoint.
A self-adjoint operator may be reduced to the form

n

0 ou
L[u] Z axi (Aij 7% ) + Cu

'L 7—*
We see that the following expression reduces to a divergence
n OP;

— 1.11
i=10%; (1.1

oL[u] —uM[v] =

L 0 o(A4;
where By==y (vA”—ti —u (4iyo)
ji=1 6x_,- 8xj

)+Biuv i=1,2,--,n (1.12)

If D is a finite region bounded by a sufficiently regular closed surface S, we
have by the divergence theorem

f(vL[u] — uM[)) dx_f Z P; cos (v, ;) dS (1.13)

g1
Here, we use the following notations: dx denotes an element of volume in the
coordinate space xi, xz2, -+-, % ; S denotes a surface element; v denotes the
direction of the outer normal to the surface S. The integration is denoted by a

single integral sign regardless of the dimensionality of the integral. These
conventions will be used throughout.

2. Classification of Second-order Partial Differential Equations and Their
Reduction to Canonical Form

Let us perform a transformation of Equation (1.3) by introducing the new
independent variables

§=qpxy) =A%) (1.14)



