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ORDINARY DIFFERENTIAL EQUATIONS



PREFACE

The major aims of this book are to provide a text in the spirit
of the current emphasis on quality mathematics for all students of
the subject and to make available to the student those ideas which
are fundamental to the understanding of ordinary differential
equations.

The book is planned so that it may be used in different ways,
depending on the preparation of the class. Experience in teaching
the material indicates that students who have completed a sound
course in elementary calculus will be able to understand the state-
ments of all theorems and that they will find the solutions of all
but a few exercises attainable. Numerous worked examples are
provided. Teachers of this subject are aware that the proofs of
some of the central theorems necessarily require a working knowl-
edge of advanced calculus. Accordingly, if it is desired to include
in the course all proofs provided by the book, the student should
have had such a course, or at least be taking one concurrently.

A word or two about the arrangement of the book may be
helpful. The first two chapters deal with the usual elementary
methods of solving first-order differential equations and linear
differential equations with constant coefficients. The methods
are largely formal. Simple applications appear in Chapter 3.
The study of the nature of solutions starts in Chapter 4, which
begins, as it must, with a careful definition of a solution—a

definition that simply formalizes what the student has already
v



vi PREFACE

learned. The existence theorem is stated, and simple applications
are made in this chapter and again in the study of properties of
solutions of linear differential equations in Chapters 5 and 7.
Its proof appears in Chapter 9. (Here, and at many points, the
book follows the time-tested “first how, then why” approach to
learning mathematics.) The book contains material on the
Laplace transform (Chapter 2, Sections 6, 7, and 8), an additional
chapter on applications (Chapter 6), and the ideas involved in
Liapunov’s ““direct method”—ideas that have become of such
great importance in recent times in studying the stability of
differential systems (Chapter 7, Sections 4, 5, and 6). A special
effort has been made to present these results in such a way that
they will be usable by the student even though the proofs of the
relevant theorems are rather sophisticated. A reasonably adequate
account of power-series solutions appears in Chapter 8. The
methods of this chapter are, of course, necessarily rather formal.
The book concludes with Chapters 10 and 11 on the fundamentals of
oscillation theory and the related theory of characteristic functions.

The text is accordingly so arranged that classes unfamiliar with
differential equations may begin with Chapter 1. Other classes
already acquainted with elementary methods of solving differential
equations may review the first three chapters quickly before
beginning their study of Chapter 4. And some classes, those for
whom the ideas of Chapter 1-3 are quite familiar, may well
choose to begin their course of study with Chapter 4. Chapters 3
and 6, the chapters on physical applications, may be omitted by
classes interested only in the mathematical theory without
interrupting the continuity of the text.

My thanks are owed to many. Helpful ideas have come from
many teachers and students who used my earlier book on the same
subject. Special thanks are due Professors R. H. Bruck and R. C.
MacCamy for their valued comments. I wish to acknowledge
helpful and stimulating conversations I have had with Professors S.
Lefschetz, Jack Hale, Joseph LaSalle, and their colleagues at RIAS.
Finally, I wish to express my gratitude to The McGraw-Hill Book
Company for permitting use of material from my earlier book and
to the present publishers for their unfailing courtesy and helpful-
ness to me in the publication of the present book.

WALTER LEIGHTON
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Elementary Methods

1 Introduction

Differential equations are equations that involve derivatives.
For example, the equations

Vo= f),
y'+y=0,
(1.1) Y=+ Yy,

3_2u i ﬁ =0
oy*
are differential equations. The first three of these equations are
called ordinary differential equations because they involve the
ordinary derivatives of the unknown y. The last equation is an
example of a partial differential equation. We shall be concerned
with ordinary differential equations and their solutions.
To solve an algebraic equation, such as

(1.2) x2—-3x+2=0,

we seek a number with the property that when the unknown x is

replaced by this number the left-hand member of the equation

reduces to zero. In equation (1.2) either the number 1 or the
1



2 ELEMENTARY METHODS [cH. 1]

number 2 has this property. We say that this equation has the
two solutions 1 and 2. To solve a differential equation we seek to
determine not an unknown number but an unknown function.
For example, in the equation

(1.3) y' 4+ y=0,

y is regarded as the unknown. To find a solution we attempt to
determine a function defined on an interval with the property that
when y is replaced by this function, the equation reduces to an
identity on this interval. It is clear that sin x is a solution of (1.3)
for all values of x, for,

(sinx)” + sinx =0 (—o0 < x < o).

Similarly, it is easy to verify that cos x is also a solution of the
differential equation (1.3).

Differential equations play a fundamental role in almost every
branch of science and of engineering. They are of central im-
portance in mathematical analysis. A differential equation de-
scribes the flow of current in a conductor; another describes the
flow of heat in a slab. Other differential equations describe the
motion of an intercontinental missile; still another describes
the behavior of a chemical mixture. Sometimes it is important
to find a particular solution of a given differential equation.
Often we are more interested in the existence and behavior of
solutions of a given differential equation than we are in finding
its solutions.

In this chapter we shall begin our study by solving certain
simple and important types of differential equations.

The order of a differential equation is the order of the highest
derivative that appears in the equation. Accordingly, the first
equation in (1.1) is of first order, and the next two equations are of
second order. Similarly, the differential equation

Yo+t =e
is of the third order, and the equation

(ym/)2 + yy/ - 3
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is of fourth order. The differential equation
(1.4) M(x,y) + N(x,p)y' =0
is of first order. It is frequently useful to rewrite this equation in
the form
(1.4 M(x,y)dx + N(x,y)dy = 0.
Thus,

(x2 + ¥ dx + 2xdy = 0,

xevdx + (1 +y)dy =0
are differential equations of the first order written in the form
(1.4)'.
EXERCISES

1. Verify that if ¢, and ¢, are constants, ¢, sin x + ¢, cos x is a solution
of the differential equation y” + y = 0.

2. Find by inspection a solution of each of the following differential
equations:

@y —y=0;
(b) y' + 2y =0;
(c) y =sinx.

3. Verify that the function ¢,e* + c¢,.€?* (¢y, ¢, constants) is a solution of
the differential equation y” — 3y" + 2y = 0.

4. Determine r(x) such that the function sin log x (x > 0) is a solution
of the differential equation [r(x)y’]" + ;‘—; =0.

5. Verify that sin x is a solution of the differential equation y'2 + y2 = 1.

6. Verify that if ¢; and ¢, are constants and x > 0, the function

.1 1 . : . . .
c sm; + ¢y cos; is a solution of the differential equation
(*) + x7% = 0.
ANSWERS

2. (a) €.
4. x.
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2 Exact Differential Equations of First Order

A particularly important class of differential equations are the
so-called exact differential equations. A differential equation

2.1) M(x,y)dx + N(x,y)dy =0
is said to be exact if there exists a function g(x, y) such that
dlg(x,y)] = M(x,y) dx + N(x,y) dy;
that is to say, if there exists a function g(x,y) such that
g:(x,y) = M(x,y) and g,(x,y) = N(x,y).
Thus, the equation
2.2) Ax —y)dx + Qy — x)dy =0

is exact, since its left-hand member is the differential of the
function,

g(x,y) = 2x%2 — xy + )?,
for

d2x® — xy + y?) = (4x — y)dx + 2y — x) dy.

Clearly, we might equally well have chosen g(x,y) = 2x2 — xy
+ 2+ 3, or g(x,y) = 2x% — xy + »%2 + ¢, where ¢ is any
constant.

When g(x,y) is a differentiable function such that

d[g(x, )] = M(x,y) dx + N(x,y) dy,

any function g(x,y) — ¢, where c is a constant, is called an integral
of the corresponding differential equation (2.1). Curves defined
by the equations

g(x,») = ¢ (c constant)

are called integral curves of the differential equation. Accord-
ingly, the function 2x* — xy + y? is an integral of equation (2.2).
Integral curves of equation (2.2) are given by the equation

2.3) 2x2 — xy + ¥ = c.
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When ¢ > 0 the curves given by (2.3) are readily seen to be
ellipses.

It is natural to inquire how we may identify those differential
equations (2.1) that are exact, and how, when they are exact,
corresponding integrals g(x, y) may be determined. The following
theorem is fundamental.

Theorem 2.1. If the functions M (x,y), N(x,y) and the partial
derivatives M (x,y), N.(x,y) are continuous in a square region R, a
necessary and sufficient condition that the differential equation

M(x,y)dx + N(x,y)dy =0
be exact is that
oM _ oON
24) Ty T o

The proof of the necessity of the condition is immediate. We
suppose the differential equation is exact; that is, there exists a
function g(x, y) with the property that

8(x,y) = M(x,y),  g/(x,y) = N(x,»).
Since g,, = gy, it follows at once that
oM _ oN
ay ox
The proof of the necessity is complete.

In proving the sufficiency we exhibit a function g(x,y) whose

partial derivatives satisfy the condition
g:t(xa.v) = M(xvy) gy(xay) = N(X,y)

Such a function is*
z Y

(2.5) g(x,y) = f M (x,y,) dx + f N(x,y) dy,
To Yo

* The student who is familiar with line integrals will recognize the
integral in (2.5) as the line integral | M dx + N dy taken over an “elbow
path” from the point (xo,y0) to (x,y). Condition (2.4) will be seen to be
precisely the condition that the line integral be independent of the path
in R.
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where (x,, ;) is a fixed point and (x,y) is an arbitrary point of the
region R. For,

Yy
g = M(x.yo) + [ Nixy) dy

v
= M(x,y,) +J; M (x,y) dy

M(x,J’o) + [M(x,y) - M(X,J’o)]
M(x,y);

while
g = N(x,y).

The proof of the theorem is complete.
Example. In the differential equation
(2.6) (Bx%2 4+ y)dx + 2xydy =0

we see that M(x,y) = 3x2? + y?, N(x,y) = 2xy, and M, = 2y,
N, = 2y. Thus, the differential equation is exact. To find an
integral g(x,y) we choose the point (x,,y,) to be the origin, and we
have

I

& v
g0e) = [+ 0 dx + [ 20y y
0 0

2.7 = x% + xy2

It is easily seen that the differential of (2.7) is given by the left-
hand member of (2.6). Integral curves are given by the equation

(2.8) x3 + xy? = ¢,

where c is a constant.

By finding (2.8) we have solved equation (2.6) in the sense that
if we solve equation (2.8) for y and obtain a differentiable function
of x, then that function is a solution of the differential equation.
Specifically, we find that

y = iA/é(c - x%).
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_ —
It is easy to verify that both A/ )lc (¢ — x®)and — A/ 3 (¢ — x%)are

indeed solutions of (2.6) over a suitable interval of the x-axis.
This is the general situation, as will be seen from the following
theorem.

Theorem 2.2. If g(x,y) is an integral of the exact differential
equation M(x,y)dx + N(x,y)dy = 0, any differentiable solution
y(x) of the equation g(x,y) = c is a solution of the differential
equation.

To prove the theorem note that because g(x,y) is an integral of
the differential equation it follows that

g&(x.y) = M(x,y),  g&,/(x,y) = N(x,y).
Thus,
&%, y(x)] = M[x,y(0)],  glx,y(x)] = N[x,y(x)].

Further, since y(x) is a solution of the equation g(x,y) = ¢, we
have
glx,y(x)] = ¢ (c constant).

It follows that
&%, y(X)] + gulx, y()]y'(x) = 0
and, hence, that
Mx,y(x)] + Nlx,p(x)]y'(x) = 0;
that is to say, y(x) is a solution of the given differential equation.

Alternate method. The line integral (2.5) provides a simple and
direct method of solving an exact differential equation. An
alternate method, the validity of which may be established by the
preceding analysis, will be illustrated by an example.

We have observed that the differential equation

2.9) (B3x2 + y*dx + 2xydy =0
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is exact. To find an integral we first integrate the term 2xy dy
formally with respect to y, obtaining

2

xy2.

Next, we determine a function f(x), of x alone, such that

dxy* + f(x)]

is given by the left-hand member of (2.9). That is, we wish to
find a function f(x) such that

2xydy + y?*dx + f'(x) dx = (3x% + y?)dx + 2xy dy.
This is equivalent to the equation

f(x) = 3x2
It follows that
Sx) = x* + ¢,

and that integrals of (2.9) are given by
xy? + x3 + ¢

We might equally well have commenced by integrating formally
the term (3x2 + »?) dx, obtaining x® + xy?. Then we seek to
determine a function g(y), of y alone, such that d[x® + xy?
+ g(»)] is given by the left-hand member of (2.9).

An advantage of the alternate method may be observed in the
first treatment of equation (2.9). Clearly, if we can determine the
function f(x), the equation is necessarily solved. It is desirable,
however, to demonstrate that under the conditions of Theorem
2.1, such a function f(x) can always be determined. This can be
seen as follows. Consider the differential equation

M(x,y)dx + N(x,y)dy = 0,

and suppose that the conditions of Theorem 2.1 are satisfied. By
“formal integration” of the term N(x,y) dy is meant determining
a function

y
H(x,y) = k + f N(x,y) dy (k constant),
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where the points (x,),) and (x,y) lie in R.  We note that

H,(x,y) = N(x,y),

(2.10)  Hix,)) f Nx,3) dy =f M,(x.y) dy

M(x,y)

Y=y
= M(x,y) — M(x,yo).
Yo

=Y%0

To complete the demonstration we show that there exists a
function f(x), of x alone, such that

(2.11) d[H(x,y) + f(x)] = M(x,y)dx + N(x,y) dy.

This is equivalent to demonstrating that there exists a function f(x)
such that

Hx(x’y) dx + Hy(x’y) d)’ + f"(x) dx = M(x’y) dx + N(x,y) dya
or, by (2.10), such that
S(x) = M(x,y,).

It is clear that f(x) may be taken as

s = | " M(x,y,) dx,

if (xo, ) lies in R.

Remark. 1t is frequently desirable in differential equation
theory to note a distinction between solving a differential equation
and finding a solution of a differential equation. Recall that a
solution is always a function of x defined on an interval which
satisfies the differential equation. On the other hand, it is
customary to regard a first-order differential equation as solved
when we can write equations of its integral curves. Theorem 2.2,
of course, justifies this seeming ambiguity.



