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Preface

This volume is intended as an essentially self contained exposition of portions of the
sec d order quasilinear elliptic partial differential equations, with
emphas:s n the Dirichlet problem in bounded domains. It grew out of lecture
notes for graduate courses by the authors at Stanford University, the final material
extending well beyond the scope of these courses. By including preparatory
chapters on topics such as potential theory and functional analysis, we have
attempted to make the work accessible to a broad spectrum of readers. Above all,
we hope the readers of this book will gain an appreciation of the multitude of
ingenious barehanded techniques that have been developed in the study of elliptic
equations and have become part of the repertoire of analysis.

Many individuals have assisted us during the evolution of this work over the
past several years. In particular, we are grateful for the valuable discussions
with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful
comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and
B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S.
Geue in Section 10.6; and for the impeccably typed manuscript which resulted
from the dedicated efforts of Isolde Field at Stanford and Anna Zalucki atCanberra.
The research of the authors connected with this yolume was supported in part by
the National Science Foundation.

August 1977  David Gilbarg Neil S. Trudinger
Stanford Canberra
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Chapter 1

Introduction

Summary

The principal objective of this work is the systematic development of the general
theory of second order quasilinear elliptic equations and of the linear theory
required in the process. This means we shall be concerned with the solvability of
boundary value problems (primarily the Dirichlet problem) and related general
properties of solutions of linear equations

(1.1) Lu=a“(x)D,u+b(x)Du+c(xu=f(x), i.j=1,2,....n
and of quasilinear equations
(1:2) Qu=a"(x, u, Du)D;u+b(x, u, Du)=0.

Here Du=(Du, ..., Du), where Du=0u/dx;, D,ju=3%u/0x, ¢x,, etc.. and the
summation convention is understood. The ellipticity of these equations is expressed
by the fact that the coefficient matrix [a”] is (in each case) positive definite in the
domain of the respective arguments. We refer to an equation as uniformly elliptic
if the ratio y of maximum to minimum eigenvalue of the matrix [a"] is bounded.
We shall be concerned with both non-uniformly and uniformly elliptic equations.

The classical prototypes of linear elliptic equations are of course Laplace’s
equation

Ay= 5 D u=0

and its inhomogeneous counterpart, Poisson’s equation Au= f. Probably the best
known example of a quasilinear elliptic equation is the minimal surface equation

Y. D(Du/(1+ |Dul*)''?)=0,

~which arises in the problem of least area. This equation is non-uniformly elliptic,
with y=1+|Du|?. The properties of the differential operators in these examples
motivate much of the theory of the general classes of equations discussed in this
book.



2 1. Introduction

The relevant linear theory is developed in Chapters 2-8 (and in part of Chapter
11). Although this material has independent interest, the emphasis here is on
aspectsneeded for application to nonlinear problems. Thus the theory stresses weak
hypotheses on the coefficients and passes over many of the important classical and
modern results on linear elliptic equations.

Since we are ultlmately interested in classical solutions of equatxon (1.2), whatis
required at some point is an underlying theory of classical solutions for a suffi-
ciently large class of linear equations. This is provided by the Schauder theory in
Chapter 6, which is an essentially complete theory for the class of equations (1.1)
with Holder continuous coefficients. Whereas such equations enjoy a definitive
existenice and regularity theory for classical solutions, corresponding results cease
to be valid for equations in which the coefficients are assumed only continuous.

A natural starting point for the study of classical solutions is the theory of
Laplace’s and Poisson’s equations. This is the content of Chapters 2 and 4. In
anticipation of later developments the Dirichlet problem for harmonic functions
with continuous boundary values is approached through the Perron method of
subharmonic functions. This emphasizes the maximum principle, and with it the
barrier concept for studying boundary behavior, in arguments that are readily
extended to more general situaiions in later chapters. In Chapter 4 we derive the
basic Holder estimates for Poisson’s equation from an analysis of the Newtonian
potential. The principal result here (see Theorems 4.6, 4.8) states that all C%(Q)
solutions of Poisson’s equation, du=f, in a domain 2 of R" §atlsfy a uniform
estimate in any subset Q'c cQ

(1.3) H““cz,qmgc(suP |u + "f”c-(ﬁ))~
(o]

where C is a constant depending only on a (0 <a< 1), the dimension » and dist
(&', 0Q); (for notation see Section 4.1). This interior estimate (interior since
Q' < <=Q) can be extended to a global estimate for solutions with sufficiently
smooth boundary values provided the boundary 0 is also sufficiently smooth.
In Chapter 4 estimates u to the boundary are established only for hyperplane and
spherical boundaries, but these suffice for the later applications.

The climax of the theory of classical solutions of linear second order elliptic
equations is achieved in the Schauder theory, which is developed in modified and
expanded form in Chapter 6. Essentially, this theory extends the results of potential
theory to the class of equations (1.1) having Holder continuous coefficients. This is
accomplished by the simple but fundamental device of regarding the equation
locally as a perturbation of the constant coefficient equation obtained by fixing the
leading coefficients at their values at a single point. A careful calculation based on
the above mentioned estimates for Poisson’s equation yields the same inequality
(1.3) for any C** solution of (1.1), where the constant C now depends also on the
bounds and Holder constants of the coefficients and in addition on the minimum
and maximum eigenvalues of the coefficient matrix [¢”] in Q. These results are
stated as interior estimates in terms of weighted interior norms (Theorem 6.2) and,
in the case of sufficiently smooth boundary data, as global estimates in terms of
global norms (Theorem 6.6). Here we meet the important and recurring concept of



Summary 13

an aprioriestimate ; namely, an estimate (in terms of given data) valid for all possible
solutions of a class of problems even if the hypotheses do not guarantee the
existence of such solutions. A major part of this book is devoted to tne establish-
ment of apriori bounds for various problems. (We have taken the liberty of
replacing the latin' a priori with the single word apriori, which will be used
throughout.)

The importance of such apriori estimates is visible in several applications in
Chapter 6, among them in establishing the solvability of the Dirichlet problem by
the method of continuity (Theorem 6.8) and in proving the higher order regularity
of C? solutions under appropriate smoothness hypotheses (Theorems 6.17, 6.19).
In both cases the estimates provide the necessary compactness properties for
certain classes of solutions, from which the desired results are easily inferred.

We remark on several additional features of Chapter 6, which are not needed
for the later developments but which broaden the scope of the basic Schauder
theory. In Section 6.5.it is seen that for continuous bouiidary values and a suitably
wide class of domains the proof of solvability of the Dirichlet problem for (1.1) can
be achieved entirely with interior estimates, thereby simplifying the structure of the
theory. The results of\ Section 6.6 extend the existence theory for the Dirichlet
problem to certain classes of non-uniformly elliptic equations. Here we see how
relations between geometric properties of the boundary and the degenerate ellipti-
city at the boundary determine the continuous assumption of boundary values.
The methods are based on barrier arguments that foreshadow analogous (but
deeper) results for nonlinear equations in Part II. In Section 6.7 we extend the
theory of (1.1) to the regular oblique derivative problem. The method is basically
an extrapolation to these boundary conditions of the earlier treatment of Poisson’s
equation and the Schauder theory (without barrier arguments, however).

In the preceding considerations, especially in the existence theory and barrier
arguments, the maximum principle for the operator L (when ¢<0) plays an
essential part. This is a special feature of second order elliptic equations that
simplifies and strengthens the theory. The basic facts concerning the maximum
principle, as well as illustrative applications of comparison methods, are contained
in Chapter 3. The maximum principle provides the earliest and simplest apriori
estimates of the general theory. It is of considerable interest that all the estimates of
Chapters 4 and 6 can be derived entirely from comparison arguments based on the
maximum principle, without any mention of the Newtonian potential or integrals.

An alternative and more genefral approach to linear problems, without poten-
tial theory, can be achieved by Hilbert space methods based on generalized or
weak solytions, as i?l‘Chapter 8. To be more specific, let L' be a second order
differential operator, with principal part of divergence form, defined by

L'u=D(a"(x)D u+ b(x)u) + c'(x)Du+d(x)u.

If the coefficients are sufficiently smooth, then clearly this operator falls within the
class digcussed in Chapter 6. However, even if the cocfficients are in a much wider
class a.ﬁ u is only weakly differentiable (in the sense of Chapter-7);-one <an still
define weak or generalized solutions of L'u=g in appropriate function classes.
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In particular, if the coefficients a”, b, ¢’ are bounded and measurable in Q and ¢
is an integrable function in €, let us call ¥ a weak or generalized solution of
Lu=gin Qif ue W' Q) (as defined in Chapter 7) and

(1.4) f (@D u+b'u)Dp—(¢'Du+ du)r] dx=— fyz' dx
9] 2
for all test functions v € C3(). It is clear that if the coefficients and g are suffi-
ciently smooth and u € C*(2), then u is also a classical solution.
We can now speak also of weak solutions u of the generalized Dirichlet problem,

Lu=gin Q, u=¢ on ég,

if i is a weak solution satisfying u—@ € W} *(Q), where ¢ € W' %(Q). Assuming
that the minimum eigenvalue of [¢"] is bounded away from zero in 2, that

(1.5) Db +d<0

in the weak sense, and that also g € L*(R), we find in Theorem 8.3 that the
generalized Dirichlet problem has a unique solution u € W'-?(Q). Condition (1.5),
which is the analogue of ¢<0 in (1.1), assures a maximum principle for weak
solutions of L'u>0(<0) (Theorem 8.1) and hence uniqueness for the generalized
Dirichlet problem. Exitence of a solution then follows from the Fredholm alter-
native for the operator L' (Theorem 8.6), which is proved by an application of the
Riesz representation theorem in the Hilbert space W' %(Q).

The major part of Chapter 8 is taken up with the regularity theory for weak
solutions. Additional regularity of the coefficients in (1.4) implies that the solutions
belong to higher W* 2 spaces (Theorems 8.8, 8.10). It follows from the Sobolev
imbedding theorems in Chapter 7 that weak solutions are in fact classical solutions
provided the coefficients are sufficiently regular. Global regularity of these
solutions are inferred by extending interior regularity to the boundary when the
boundary data are sufficiently smooth (Theorems 8.13, 8.14).

The regularity theory of weak solutions and the associated pointwise estimates
are fundamental to the nonlinear theory. These results provide the starting point
for the ““bootstrap’’ arguments that are typical of nonlinear problems. Briefly, the
idea here is to start with weak solutions of a quasilinear equation, regarding them
as weak solutions of related linear equations obtained by inserting them into the
coefficients, and then to proceed by establishing improved regularity of these
solutions. Starting anew with the latter solutions and repeating the process, still
further regularity is assured, and so on, until the original weak solutions are finally
proved to be suitably smooth. This is the essence of the regularity proofs for the
older variational problems and is implicit in the nonlinear theory presented here.

The Holder estimates for weak solutions that are so vital for the nonlinear
theory are derived in Chapter 8 from Harnack inequalities based on the Moser
iteration technique (Theorems 8.17, 8.18, 8.20, 8.24). These results generalize the
basicapriori Holder estimate of De Giorgi, which provided the initial breakthrough
in the theory of quasilinear equations in more than two independent variables.
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The arguments rest on ntegral estimates for weak solutions u derived from judi-
cious choice of test functions v in (1.4). The test function technique is the dominant
theme in the derivation of estimates throughout most of this work.

Part II of this book is devoted largely to the Dirichlet problem and related
estimates for quasilinear equations. The results concern in part the general operater
(1.2) while others apply especially to operators of divergence form

(1.6) Qu=div A(x, u, Du)+ B(x, u, Du)

where A(x, z, p) and B(x, z, p) are respectively vector and scalar functions defined
on 2 xR xR".

Chapter 9 extends maximum and comparison principles (analogous to results
in Chapter 3) to solutions and subsolutions of quasilinear equations. We mention
in particular apriori bounds for solutions of Qu=>0 (=0), where Q is a divergence
form operator satisfying certain structure conditions more general than ellipticity
(Theorem 9.7).

Chapter 10 provides the basic framework for the solution of the Dirichlet
problem in the following chapters. We are concerned principally with classical
solutions, and the equations may be uniformly or non-uniformly elliptic. Under
suitable general hypotheses any globally smooth solution u of the boundary value
problem for Qu=0 in a domain 2 with smooth boundary can be viewed as a
fixed point, u= Tu, of a compact operator 7 from C"*®) to C'*Q) for any
x € (0,1). In the applications the function defined by Tu, for any u € C''*(Q), is the
unique solution of the /inear problem obtained by inserting « into the coefficients
of Q. The Leray-Schauder fixed point theorem (proved in Chapter 10) then implies
the existence of a solution of the boundary value problem provided an apriori
bound, in C!"%Q), can be established for the solutions of a related continuous
family of equations w=T(u; o), 0<o<1, where T(u; 1)=Tu (Theorems 10.4,
10.7). The establishment of such bounds for certain broad classes of Dirichlet
problems is the object of Chapter 12-14.

The general procedure for obtaining the required apriori bound for possible
solutions u is a four-step process involving successive estimation of sup |u],

1o]

sup |Du|, sup [Du|, and |[u] .. «g for some a>0. Each of these estimates pre-
002 Q

supposes the preceding ones and the final bound on |ul¢., -5 completes the
existence proof based on the Leray-Schauder theorem. !
As already observed, bounds on sup |u| are discussed in Chapter 9. In the later
2

chapters this bound is either assumed in the hypotheses or is implied by properties
of the equation.

Equations in two variables (Chapter 11) occupy a special place in the theory.
This is due in part to the distinctive methods that have been developed for them
and also to the results, some of which have no counterpart for equations in more
than two variables. The method of quasiconformal mappings and arguments based
on divergence structure equations (cf. Chapter 10) are both applicable to equations
in two variables and yield relatively easily the desired C'** apriori estimates, from
which a solution of the Dirichlet problem follows readily.
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Of particular interest is the fact that solutions of uniformly elliptic linear equa-
tions in two variables satisfy an apriori C!'* estimate depending only on the
ellipticity constants and bounds on the coefficients, without any regularity assump-
tions (Theorem 11.4). Such a C'* estimate, or even the existence of a gradient
bound under the same general conditions is unknown for equations in more than
two variables. Another special feature of the two-dimensional theory is the
existence of an apriori C* bound | Du| < K for solutions of arbitrary elliptic equations

(1.7) au,,+2bu, +cu, =0,

where u is continuous on the closure of a bounded convex domain Q and has
boundary value ¢ on 0Q satisfying a bounded slope (or three-point) condition
with constant K. This classical result, usually based on a theorem of Radé on
saddle surfaces, is given an elementary proof in Lemma 11.6. The stated gradient
bound, which is valid for all solutions u of the general quasilinear equation (1.7)
in which a=a(x, y, u, u,, uy), etc., and such that u = ¢ on 09, reduces this Dirichlet
problem to the case of uniformly elliptic equations treated in Theorem 11.5. In
Theorém 11.7 we obtain a solution of the general Dirichlet problem for (1.7),
assuming local Holder continuity of the coefficients and a bounded slope condition
for the boundary data (without further smoothness restrictions on the data).

Chapters 12, 13 and 14 are devoted to the derivation of the gradient estimates
involved in the existence procedure described above. In Chapter 12, we prove the
fundamental results of Ladyzhenskaya and Ural’tseva on Holder estimates of
derivatives of elliptic quasilinear equations. In Chapter 13 we study the estimation
of the gradient of solutions of elliptic quasilinear equations on the boundary.
After considering general and convex domains, we give an account of the theory of
Serrin which associates generalized boundary curvature conditions with the solva-
bility of the Dirichlet problem. In particular, we are able to conclude from the
results of Chapters 10, 12 and 13 the Jenkins and Serrin criterion for solvability of
the Dirichlet problem for the minimal surface equation, namely, that this problem
is solvable for smooth domains and arbitrary smooth boundary values if and only
if the mean curvature of the boundary (with respect to the inner normal) is non-
negative at every point (Theorem 13.14).

Global and interior gradient bounds for solutions u of quasilinear equations
are established in Chapter 14. Following a refinement of an old procedure of
Bernstein we derive estimates for sup |Du| in terms of sup |Dy| for classes of

2 n

equations that include both uniformly elliptic equations satisfying natural growth
conditions and equations sharing common structural properties with the prescribed
mean curvature equation (Theorem 14.2). A variant of our approach yields interior
gradient estimates for a more restricted class of equations (Theorem 14.3). We also
consider uniformly and non-uniformly elliptic equations in divergence form
(Theorems 14.4, 14.5 and 14.6), in which cases, by appropriate test function argu-
ments, we deduce gradient estimates under different types of coefficient conditions
than in the general case. We conclude Chapter 14 with a selection of existence
theorems, chosen to illustrate the scope of the theory. These theorems are all
obtained by various combinations of the apriori estimates in Chapters 9, 13 and 14
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and a judicious choice of a related family of problems to which Theorem 10.8 can
be applied.

In Chapter 15, we concentrate on the prescribed mean curvature equation and
derive an interior gradient bound (Theorem 15.5) thereby enabling us to deduce
existence theorems for the Dirichlet problem when only continuous boundary
values are assigned (Theorems 15.8, 15.10). We also consider a family of equations
intwo variables, which in a certain sense bear the same relationship to the prescribed
mean curvature equation as the uniformly elliptic equations of Chapter 11 bear to
Laplace’s equation. Indeed, by means of a generalized notion of quasiconformal
mapping, we derive interior estimates for first and second derivatives. The second
derivative estimates provide a generalization of a well known curvature estimate
of Heinz for solutions of the minimal surface equation (Theorem 15.20) and
moreover, imply an extension of the famous result of Bernstein that entire solutions
of the minimal surface equation in two variables must be linear , Corollary 15.19).
However, perhaps the striking feature of Theorems 15.5 and 15.20 is the approach.
Rather than working in the domain Q, we work on the hypersurface S given by the
graph of the solution « and exploit various relations between the tangential
gradient and Laplacian operators on S and the mean curvature of S.

We conclude this summary with some guides to the reader. The material i1s not
in strict logical order. Thus the theory of Poisson’s equation (Chapter 4) would
normally follow Laplace’s equation (Chapter 2). However. the elementary
character of the results on the maximum principle (Chapter 3) and the opportunity
for the reader to meet early some general problems with variable coefficients
recommends its insertion after Chapter 2. In fact. the general maximum principle
is not used until the existence theory of Chapter 6. Tiie basic material on functional
analysis (Chapter 5) is needed in.only a minor way for the Schauder theory: the
contraction mapping principle and the basic concepts of Banach spaces suffice.
except for the proof of the alternative in Theorem 6.135. For applications to non-
linear problems in Part II it is sufficient to know the results of Section 1-3 of
Chapter 6. Depending on the reader’s interests, it may be preferable to study the
linear theory by starting directly with L2 theory in Chapter 8: this assumes the
preliminary material on functional analysis (Chapter 5) and on the calculus of
weakly differentiable functions (Chapter 7). The Harnack inequalities and Holder
estimates in the regularity theory of Chapter 8 are not applied until Chapter 12.
The theory of quasilinear equations in two variables (Chapter 11) is essentially
independent of Chapters 7-10 and can be read following Chapter 6 provided one
assumes the Schauder fixed point theorem (Theorem 10.1). The method of quasi-
conformal mappings is met again in Chapter 15 but otherwise the remaining
chapters are independent of Chapter 11. Accordingly. after the basic outline of the
nonlinear theory in Chapter 10 the reader can proceed directly to the ,;-variable
theory in Chapters 12-15. Chapter 15 is largely independent of Chapters 12-14.

Further Remarks

Beyond the assumption of basic real analysis and linear algebra the material in this
work is almost entirely self-contained. Thus. much of the preliminary development



