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PREFACE

This book is essentially made up of the notes of the lectures
the seven authors gave at the International Centre for Mechanical

Sciences in Udine in July 1979.

Material with microstructure has generated a tremendous expansion
of interest during the past fifteen years. In particular this concerns
the theory of Cosserat media with six degrees of freedom as well as the
theory based on the notion of directors in relation to more general
micropolar continua. This book attempts to provide an up-to-date and
reasonably concise summary of our understanding of micropolar materials.
Both asymmetric elasticity and fluids are covered. It is hoped that
students with physics, mathematics and mechanics backgrounds as well as

professional will find this treatise useful for study and reference.

As shown by the Table of Contents, the unusually broad scope of
this work includes the most diverse aspects of such materials. The
chapters range from discussion of micropolar molecular models to the
analysis of structural models, from linear to nonlinear theories and
from electromagnetic, thermal, viscous effects to lattice defects. The
subjects are treated from both theoretical and experimental points of
view with an emphasis on the physical bases, potentialities and limita-
tions of such media. An effort was made to discuss each topic selec-
tively rather than encyclopedically and to incorporate in most chapters
a discussion of the fundamentals. Efforts were also made to establish
a uniform notation throughout the exposition and a reasonable degree of
coherence among the chapters. For practical reasons, no attempt was

made to achieve unity of approach and style.

The editors and the co-authors wish to express their deep
appreciation to Professors W. Nowacki, W. Olszak and to the officers of
C.I1.S.M. for inviting them to give the lectures and for ensuring that
their stay in Udine was both enjoyable and rewarding. Thanks are also

due to the World Scientific Publishing Co.Pte.Ltd. for friendly cooperation.

0. Brulin and R.K.T. Hsieh
Stockholm, June 1981
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|1 A model for coupled rotation-displacement modes

1.1 Introduction

Consider a three-dimensional lattice of particles of finite
size. We are going to study the propagation of elastic waves in such
a lattice. These waves can travel in many different directions. For
general lattices and in general directions of propagation the displace-
ments of the particles will have both longitudinal and transverse com—
ponents. When the lattice has orthogonal symmetry, e.g. as in Fig. 1,
it is possible to find directions of propagation such that the elastic
wave can be decoupled into purely transverse and purely longitudinal

components, cf. Refs. D,Z].

1:2 Lattice of identical particles

Let us first consider a lattice with one kind of particles.
This case has been treated by Askar [3]. The central forces between
the particles can be represented by stretchable springs and the non-
central forces by flexible beams. When we are considering small dis-
placements the total motion can be obtained by superposition of

elementary motions originating from the various kinds of forces.

1.2.1 Contribution from central forces [1]

In the following only such cases will be discussed where the
general motion can be decomposed into Fourier components with either
pure longitudinal or pure transverse polarization as shown in Figs. 2
and 3. All particles lying in planes perpendicular to the propagation

vector q are then displaced by the same amount. The force on the
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Fig. 1. Example of orthogonal lattice structure.
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plage labeled_i from the plane labeled i+n is proportional to

uk(1+n) - uk(l), k = 1,2,3. Let the force constants Ck’n (defined for
one particle of the plane) refer to the interaction between planes at

a distance n from each other. The total force is obtained by summation
over n. Thus the central forces on the particle i can be written

(1) _ g gkon ( G4m) (@)

Fk z " K ) (1.1)

When only interaction between neighbouring planes is included the sums

over n are reduced to two terms only, viz. n = *I.

1.2.2 Contribution from non-central forces [2,3]

For representation of non-central interaction between the
particles we shall choose extensible and flexible beams. At present
let us suppose that the beams are rigidly attached to the particles.
Let E be the direction of the beam. Let the particle-motion be com-
posed of transverse displacements in the N-direction and rotations V¥
around axes in the E—direction, choosing Y to be positive in the
counter—-clock-wise direction. The total shear force between two
particle planes with the arrangement of Figs. 1-3 will give rise to
purely transverse displacements. We shall therefore let a single beam
in the x-direction represent the non-central interaction between a
particle and all particles in another plane. The shear forces T and
moments M, acting on the beam between the particles labeled i and i+n

are thus [2]:

- (1) _ (i+n) 1 (i) 1+n)
i,i0n = Kl 77U ) g Ay e KW ¥ b3
- (1) _ (i+n) 1 (i+n) , (1)
T Kuy™"-u, ) + 3 2i,i+n UM +Y, (1.2)
_ (1)_ (i+n) 1,2 (1) (1+n)
T TR e IS TR C N S
= (1)_ G#n) 1 02 (i+n) (i)
Min,i T 2, ienK2 U2 T A gy T ¥
1.3)



1.2.3 Motion of the particles
Let the mass of the particle be M and its moment of inertia J.

We shall first study the case where all distances between the planes

are equal, i.e. Qi j+n - DA and only interaction between neighbours
’
is included. Putting C' = C, Ck = Ct, k = 2,3, the equations of

motion of the particle i can be written [3]:

" iifi) _ C}L(ufiﬂ) . u](i--l) _ 2u|(i)) (1.4)
(1.5)
5 @gl) _ %aK(u§i+l) —uéi_l))-%azK(w§i+l) +w§i—1) +4w§i))

(1.6)

and equations similar to (1.5-6) for u, and wz. We seek solutions of

3
the form of waves travelling in the x-direction with the wave vector g

(ues o) = (U, ¥p) explilax - wt)] (1.7)

uéi+n) = uéi)exp(iqua), etc. (1.8)

Since eq. (1.4) is not coupled to (1.5-6) we find directly for the
longitudinal mode U, [1:
2 2ct 4ct

. 2.1
we = TN (1 - cos(qa)) = - sin (iqa) (1.9)

The group velocity vgr = dw/dq is

Verg " a(c¥/m? cos(% qa) (1.10)

In the long wavelength limit, i.e. q small, we have

wWn? = Mm@’ (a.1n

The phase velocity c, of the longitudinal wave is in this limit

3
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cy = Wp/(2mq) = a/(2m) (¢ /M)?

and
0 - Lyt
Vgr,l = a(C /M)

.12)

Since we have a discrete lattice model it is not meaningful to discuss

wavelengths shorter than the lattice parameter a.

Hence
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As is well known the g-range (1.13) is referred to as the first

Brillouin zone. At the zone boundary we have

max)Z

(wy = ACQ/M

max
v =0

gr,%

The general shape of the dispersion curve is shown in Fig. 4.

T
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Fig. 4. One-particle lattice.
Dispersion curve of longitudinal mode.
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The transverse and rotational modes, U, and WB’ are coupled through

2
egs. (1.5-6). With (1.7-8) we find [3]:

[Z(Ct + K) (1-cos(qa)) - sz] U2 + iaK sin(qa) WB =0

- iaK sin(qa) U, + [3 a’K(cos(qa) + 2) - sz]w3 =0 (1.15)
Although it is possible to solve the secular equation obtained from
(1.15) explicitely, we shall not write down these rather imperspicuous

expressions. Let us instead look at the limiting cases.

In the long wavelength limit the coupling between the two modes
becomes negligible. The displacement U will lead to an acoustical
mode very similar to the longitudinal mode with solution (l.11-12),

although c? will be replaced by ct + k:

2 =1, .t 2
WH? = w7t + %) (qa)
(1.16)
0 _ t 3
vgr,t = a[(C + K)/M]
The rotational mode, on the other hand, will be independent of q:
0,2 2
(mr) = a'kK/J
(1.17)
vO =0
gr,r

At the opposite limit, qa = 7, the two modes will again be uncoupled.

Again, U2 will be similar to Ul’ i.e.
max, 2 €
(w, D7 =4 +K)/M
(1.18)
vmaX - 0
gr,t

and the rotational mode will also be gq-independent



(wmax)Z

. = a%k/(31)

(1.19)

The motion between these two limits depends upon the relative size of
the parameters, Ct, K and Maz, J. (1.16-19) shows that W, will
increase with q and w, will decrease. Physically reasonable parameter
values may imply that w?ax > w?ax. If so, there will be a regime of
q-values where the two modes are strongly coupled. The general picture

may be similar to that displayed in Fig. 5.

—> £
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0 T
—> qa

Fig. 5. One-particle lattice. Dispersion curves
of transversal and rotational modes.

2 Lattice of two kinds of alternating particles:

longitudinal motion [4,5]

As in case of one-particle lattices there are several
symmetries of lattices built from two different kinds of particles
that can be treated with the same formalism as a one-dimensional array

of particles. Our discussion will be limited to such cases.

10



2.1 Equations of motion

Let the model array of particles be as shown in Fig. 6.

2 | 2 2 1
v u v u v u
[ o d (:)—> *—> o> (:) = q
2n-1 2n 2n+1 2n+2 2n+3

Fig. 6. Longitudinal motion of two-particle lattice.

We shall begin with a study of the longitudinal displacement mode.
1 > MZ' Let

the distances between them be a and ay, the corresponding force

constants Cl and C2, and the longitudinal displacements u and v

respectively, cf Fig. 6. The equations of motion are

Consider two kinds of particles with masses M1 and M2, M

Mll.1.(21'1) _ “cz(u(Zn) _ v(2n—1)) & CI(v(2n+1) _ u(2n))

Mz{;(2n+l) _ _C](v(2n+l) _ u(2n)) % C2(u(2n+2) _ v(2n+1)) 2.1
Assuming travelling waves, cf (1.7), we put

u(2n+2) _ u(2n) exp[iq(al + az)]

v(2n+l) = V(Zn) exp(iqa]) etc. (2.2)
Introduction of (2.2) into (2.1) gives

€, +c,- lez)U—[C]exp(iqal) + C,exp(-iqa))]V = 0

[—Clexp(—iqal) - Czexp(iqaz)]U + (Cl +C2-M2w2)V =0 (2.3)

To simplify the following analysis we shall assume a; > a, and intro-

duce

11



(2.4)
C2 =C-29
al =a + €
(2.5)
a, =a-¢
(2.3) can now be written
2¢: -~ lez)U - [ZC cos (qa) + 1 265in(qa)]elq€ V=20
- [2€ cos(qa) - i26sin(aa)]u + (2€ - Mw’)e v = 0 (2.6)
Expansion of the corresponding secular determinant gives
4 2 2 2
MMyw' = 2C(M, +M)w” + 2(CT = 6T [I - cos(2qa)] = 0 (2.7)

We shall also make use of the total mass M and the reduced mass M,

defined as

M = M] + M2 (2.8)
B =Y sl (2.9)
Bt 2 i
or M= MIMZ/M
2.2 Solution in the long wavelength limit (qa small)

In this limit we expand all functions of qa and discard the
terms O(q3a3). One solution of (2.7), called the acoustical solution
is

2 _ 222 _ 2,2 33
wye = qa 3 (1 =87/C7) +0(q7a”) (2.10)
1
. 2

vgr,ac ~ a(2c/M) (2.11)

Comparison between (2.10-11) and (1.11-12) shows that the acoustical

solution has the same general appearance as the solution of the one-

12



