GEOMETRY,
SPINORS

AIND
APPLICATIONS

Donal J. Hurley
Michael A. Vandyck




Donal J. Hurley and Michael A. Vandyck

Geometry, Spinors and
Applications

=N Published in association with (
&) Springer Praxis Publishing PR@

Chichester, UK



Dr Donal ]. Hurley
Mathematics Department
University College Cork
Cork

Ireland

Dr Michael A. Vandyck
Mathematics Department
University College Cork
Cork

Ireland

SPRINGER-PRAXIS BOOKS IN MATHEMATICS

ISBN 1-85233-223-9 Springer-Verlag Berlin Heidelberg New York

British Library Cataloguing-in-Publication Data
Hurley, Donal J.
Geometry, spinors and applications
1. Spinor analysis
L. Title II. Vandyck, Michael A.
515.6'3

Library of Congress Cataloging-in-Publication Data

Hurley, Donal J., 1944

Geometry, spinors, and applications / Donal J. Hurley and Michael A. Vandyck.
p. cm.

Includes index.
1. Spinor analysis. 2. Mathematical physics. 1. Vandyck, Michael A., 1959~ II. Title.
QC20.7.565 H87 2000
530.15'563—dc21 99-050072

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

© Praxis Publishing Ltd, Chichester, UK, 2000
Printed by MPG Books Ltd, Bodmin, Cornwall, UK

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Cover design: Jim Wilkie

Printed on acid-free paper supplied by Precision Publishing Papers Ltd, UK



Geometry, Spinors and Applications




Springer
London
Berlin
Heidelberg
New York
Barcelona
Hong Kong
Milan
Paris

Santa Clara
Singapore
Tokyo



Preface

Philosophy is written in this grand book, the universe, which stands continually open to our
gaze; but the book cannot be understood unless one first learns to comprehend the language,
and read the letters, in which it is composed. It is written in the language of mathematics,
and its characters are triangles, circles, and other geometric figures without which it is humanly
impossible to understand a single word of it; without these, one wanders about in a dark labyrinth.

GALILEO [23]

This book arose from the investigation of a particular question in spinor theory,
namely the problem of defining Lie and covariant differentiation of spinor fields.
The problem has already been investigated in the literature, mostly in special cases,
but some of the approaches adopted differ widely from one another; moreover, a
number of results obtained by different authors are in contradiction with one
another. It was therefore essential to resolve these contradictions and to present
the question, in full generality, in a unified fashion. (Some recent developments
by the authors may be found in [13], [41], [42], and the references cited therein.)

In the course of this study, it was found necessary to draw information from
several areas of geometry and algebra, for instance from fibre bundles, Lie groups,
Clifford algebras, representation theory, etc. Therefore it became clear that, if
one attempted to present.the theory in a rather self-contained fashion, one would
be led to bring together and summarise a certain amount of material of interest
to a wide community; furthermore, even the well-known topics, such as covariant
differentiation of a tensor, would receive an unusual treatment, as a result of the
specific question towards which they would be focused.

When this was realised, it required only a small step to decide to include
selected applications to physics of the material presented in the theoretical part of
the book. These applications illustrate not only spinorial calculus but also aspects
of differential geometry. In this fashion, the authors hope that their work will be

helpful both to students and to researchers: students will have at their disposal
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an account of some aspects of spinors, algebra, and geometry, with applications to
physics, whereas researchers, who will be familiar with the standard topics, might
concentrate on the specific problem of spinorial differentiation.

It is important to emphasise that our aim was not to present a complete account
of all the aspects touched upon in this book. It would obviously be impossible
to present in one volume the whole of differential geometry, fibre bundles, Lie
groups, Clifford algebras, etc. Some important topics, such as the bundle theory
of curvature and torsion, have been omitted completely. On the other hand, topics
that are only briefly mentioned in the more usual treatment of the material, such
as metric-incompatible connections, receive here a great deal of attention. This is
a result of the emphasis that our specific question puts on the subject. For this
reason, the reader is assumed to have some familiarity with differential geometry,
so as to be able to see our considerations in a broader context.

It is a pleasure to acknowledge here the people from whom the authors have
benefitted, directly or indirectly, in the writing of this book. We wish to ex-
press our deep gratitude to Professor D. Speiser for his incisive criticisms, com-
ments, and remarks at various stages of the work, and for suggesting some of
the notations adopted in the text. Throughout the years leading up to the fi-
nal version of the book, we have been enlightened by discussions with Profes-
sors L. O Raifeartaigh, J. Lewis, P. Hogan, F. Hehl, and T. Laffey, and with
Drs. J. D. McCrea, C.T. O’Sullivan, and F.A. Deeney.

We would also like to thank the students who have participated in the inves-
tigation, the preparation, and the collation of the material presented hereafter.
They were, in chronological order, Messrs. P. Delaney, A. O’Connor, P. Camp-
bell, and T. Philbin. Moreover, Mr. D. Flannery, through the interest that he
took in the work, and the searching questions that he asked us, provided much
of the encouragement and the stimulation that proved essential for the successful
completion of our task.

We greatly appreciate the advice that we received from Dr. P. Cronin and Pro-

fessor G. Huxley about Greek etymology. The new terms euthikhode and brachisth-
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ode are the tangible fruits of our pleasant and interesting discussions.

For various aspects of computer-assisted typesetting, we are very indebted to
Mr. P. Flynn and Dr. J. Morrisson, and Messrs. D. O Crualaoich, N. Madden,
P. Twomey, J. O’Riordan, and J. Sheehan, as well as Miss K. Lally, with a special
mention for Mr. P. Angove, who produced the figures. Dr. C.T. O'Sullivan, Pro-
fessor M. Mansfield, and Mr. C. Horwood, of Praxis, are gratefully acknowledged
for their guidance in the art of book publishing.

Our gratitude also goes to FORBAIRT, the Mathematics Department, and
the Physics Department of University College Cork, for some financial support.
Finally, the first-named author wishes to thank his wife, Anne, for her support
and encouragement, and the second-named author would like to thank the Irish
motorcycling community (in particular MAG Ireland) for providing the proper
atmosphere and environment without which this book could never have been writ-

ten.
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