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PREFACE

Only a little over a decade has passed since George Dantzig formulated
the general linear programming problem and developed the simplex
method for its solution. In this period, the growth of interest in, and the
use of, linear programming has been remarkable. Rarely indeed has a new
mathematical technique found such a wide range of practical applications,
and simultaneously received so thorough a theoretical development in such
a short period of time. The extensive interest in linear programming which
has arisen has brought with it the need for texts at different levels of dif-
ficulty, suitable for readers of widely varying backgrounds and mathe-
matical maturity. The present work is intended for those who desire to
study the subject in some depth and detail. It attempts to provide a
fairly rigorous and complete development of the theoretical and compu-
tational aspects of linear programming as well as a discussion of a number
of practical applications.

Chapter 1 introduces the general linear programming problem and
exhibits a series of graphical examples. Chapter 2 covers the mathematical
background needed. In Chapter 3 the fundamental theoretical results
required for the simplex method are derived. Chapter 4 provides a de-
tailed development of the computational procedure of the simplex method.
The two-phase technique is introduced in Chapter 5, which also includes
a discussion of the solutions and requirements spaces. Chapter 6 presents
Charnes’ perturbation technique and the generalized simplex method for
resolving the degeneracy problem. The revised simplex method is covered
in Chapter 7. Chapter 8 is devoted to duality; included in this chapter
are the dual simplex algorithm and the primal-dual algorithm. The
solution of transportation problems is the concern of Chapter 9. A novel
approach is used to derive the transportation algorithm from the simplex
method. Generalized transportation problems are also covered in. this
chapter. Chapter 10 discusses network flow problems, the primal-dual
algorithm for transportation problems, assignment problems, and the
transhipment problem. Chapter 11 treats a number of special topics,
such as sensitivity analysis, treatment of upper bounds for the general
linear programming problem, the primal-dual algorithm for capacitated
transportation problems, the decomposition principle, and the relationships
between linear programming and zero-sum two-person games. The ap-
plication of linear programming to practical problems in industry is dis-
cussed in Chapter 12, and applications to economic theory are considered
in Chapter 13.

The level of presentation in this book assumes that the reader has a
familiarity with certain elementary topics in linear algebra (including
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vi PREFACE

convex sets). The necessary background material is reviewed in Chapter 2.
However, the reader who has had no previous introduction to the material
may find this review too abbreviated. It is suggested that such readers
study concurrently the author’s Linear Algebra, which covers in detail the
material needed. (Incidentally, the notation used is consistent throughout
both volumes.) As an aid to those who are simultaneously attempting to
gain some knowledge of linear algebra, the present book develops its
major themes in considerable detail, especially in Chapters 3, 4, 5, 6. It
might be pointed out that a knowledge of convex sets in n dimensions is
not essential for reading the text. The sections dealing with these topics
can be omitted without loss of continuity.

Although the text is fairly complete, there are several topics associated
with linear programming which are not to be found here.. Two such
topics, namely, linear programming problems some of whose parameters
may be random variables and the solution of the general linear program-
ming problem in integers, are considered by the author to be special cases
of nonlinear programming problems and are discussed in a separate volume
entitled Nonlinear and Dynamic Programming. No account is given of the
use of analog computers to solve linear programming problems. Some ma-
terial in this subject was included in an original version of the manuscript,
but was dropped because it was felt to be a diversion from the main theme,
of interest only to a small number of readers. General considerations
regarding the solution of linear programming problems on digital com-
puters are examined in the text, but- no attempt is made to describe
coding procedures in detail since the method chosen depends too much on
the characteristics of the computer to be employed. Similarly, no detailed
description of the linear programming codes. available for various com-
puters is given since these would be almost immediately out of date.

The text contains sufficient material for a two-semester course in linear
programming although it can easily be used for a one-semester or one-
quarter course in the subject. For example, the author has taught a
one-semester graduate course at MIT devoted to the theory of linear
programming. The students entering the course had no background in
linear algebra,-and hence about the first seven weeks were devoted to
covering selected topics from the first six chapters of the author’s Linear
Algebra. For the remainder of the semester the material covered consisted
of Chapters 3, 4, 5 (through Section 5-4), 6 (through Section 6-6), 7,
8 (through Sectlon 8-7), and 9 (through Section 9-12) of the present
volume. At the University of Chicago, the author has taught a one-
quarter course to graduate students who had a course in linear algebra.
After a brief review (about two weeks) of linear algebra and some discus-
sion of convex sets, the above-mentioned material, the first four sections
of Chapter 11, and most of Chapter 12 of this book were covered in the
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remainder of the quarter. It should be pointed out that this quarter course
normally required about twelve hours per week of work outside of class.

The present volume should also serve as a supplementary text for courses
in mathematical economics, engineering mathematics, operations research,
or other courses which attempt to provide a serious treatment of linear
programming. TFinally, because of its completeness, it should be useful as
a reference and as a text for self-study.

At the end of each chapter there will be found a collection of problems
for solution. Some of these problems emphasize numerical techniques,
‘while others concentrate on theoretical points. Within each of these two
classes, there is a considerable range of difficulty. The author considers
the problems to be very important, and anyone studying this work should,
at the very least, read all the problems. When linear programming prob-
lems are solved by hand, it is a good idea to use a desk calculator if at all
possible, or at least a slide rule. In this way, the numbers computed will
be obtained as decimals. Of course, if a large-scale digital computer is
used, the answers obtained will also be in decimal form. It does not seem
sound to get into the habit of solving problems by means of fractions
instead of decimal numbers, since fractions become impossibly cumbersome
unless the original coefficients are small integers. For this reason, most of
the tableaux in the text are presented in decimal form, even though they
could have been expressed more simply and accurately as fractions.
When the decimal numbers given are not exact, each element in the
tableaux is expressed with roughly the same relative error. The same
number of decimal places does not appear in each element.

For their helpful suggestions, the author wishes to express his apprecia-
tion to Professors H. Houthakker and H. Wagner, who read an early
version of the manuscript, and to Professors R. Dorfman and T. M.
Whitin, who read a later version. The author is also indebted to one of
his students, M. A. Simonnard, whose thesis laid the foundations for the
method of development used in the initial sections of Chapter 9. Jackson E.
Morris supplied most of the quotations which appear at the beginning of
each chapter. The School of Industrial Management at the Massachusetts
Institute of Technology generously provided secretarial assistance for
typing the manuscript.

G.H.
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CHAPTER 1
INTRODUCTION

‘. .. Since a crooked figure may

Altest in little plgce a million;

Then let us, ciphers to this great account,
On your imaginary forces work,”

Shakespeare—Henry V.

1-1 Optimization problems. Problems which seek to maximize or
minimize a numerical function of a number of variables (or functions),
with the variables (functions) subject to certain constraints, form a general
class which may be called optimization problems.

Many optimization problems were first encountered in the physical
sciences and geometry. The quest for solutions led to applications of the
differential calculus and to the development of the calculus of variations.
These classical optimization techniques have been known for over 150
years. They have been applied with considerable success to the solution
of many problems in the physical sciences and engineering. Later, the
differential calculus was found to be very useful in economics, especially
in developing the important results in the classical theory of production
and consumption

In the last ten or fifteen years, many new and important optimization
problems have emerged in the field of economics and have received a great
deal of attention. As a class, these problems may be referred to as program-
ming problems. They are of so much interest because of their applicability
to practical problems in government, military and industrial operations,
as well as to problems in economic theory. In general, classical optimiza-
tion techniques have been found to be of little assistance in solving these
programming problems. Therefore, new methods had to be developed.
In this book, we shall treat only a special but very important class of
programming problems known as linear programming problems. We shall
be concerned with the theory of linear programming, with numerical
techniques for solving such problems, and with applications of the theory.

1-2 Programming problems. Broadly speaking, programming prob-
lems deal with determining optimal allocations of limited resources to
meet given objectives; more specifically, they deal with situations where
a number of resources, such as men, materials, machines, and land, are
available, and are to be combined to yield one or more products. There

1 :



2 INTRODUCTION [cHAP. 1

are, however, certain restrictions on all or some of the following broad
categories, i.e.: on the total amount of each resource available, on the
quantity of each product made, on the quality of each product. Even with-
in these restrictions there will exist many feasible allocations. Out of all
permissible allocations of resources, it is desired to find the one or ones
which maximize or minimize some numerical quantity, such as profit or cost.

The actual conversion of resources to products may be a simple mixing
operation, such as mixing raw stock gasolines to form various motor fuels,
or a complicated production process involving many types of machines
and operations. In certain cases, the resources and products can be
identical. For example: We may be interested in finding the cheapest way
of transporting a product from a number of origins to a number of desti-
nations.

Linear programming deals with that class of programming problems for
which all relations among the variables are linear. The relations must be
linear both in the constraints and in the function to be optimized.

1-3 An example. Let us consider a shop with three types of machines,
A, B, and C, which can turn out four products, 1, 2, 3, 4. Any one of the
products has to undergo some aperation on each of the three types of
machines (lathes, drills, and milling machines, for example). We shall
assume that the production is continuous, and that each product must
first go on machine type A, then B, and finally C. Furthermore, we shall
assume that the time required for adjusting the setup of each machine
to a different operation, when production shifts from one product to
another, is negligible. Table 1-1 shows: (1) the hours required on each
machine type per unit of each product; (2) the total available machine
hours per week; (3) the profit realized on the sale of one unit of any one
of the products. It is assumed that the profit is directly proportional to
the number of units sold. We wish to determine the weekly output for
each product in order to maximize profits.

Examination of Table 1-1 shows that the item with the highest unit
profit requires a considerable amount of time on machines A and C; the
product with the second-best unit profit requires relatively little time on
machine A and slightly less time on machine C than the item with the
highest unit profit. The product with the lowest unit profit requires a
considerable amount of time on machine B and relatively little time on C.
This cursory examination indicates that the maximum profit will not be
achieved by restricting production to a single article. It would seem that
at least two of them should be made. It is not too obvious, however,
what the optimal product mix should be.

Suppose z; is the number of units of product j produced per week. It
is of interest to find the values of z;, z3, 23, 24 which maximize the total
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TABLE 1-1

DATA FOR EXAMPLE

Products Total time
Machine type available per
1 2 3 4 week
A 1.5 1 2.4 1 2000
B 1 5 1 3.5 8000
C 1.5 3 3.5 1 5000
Unit 5.24 | 7.30 | 8.3¢ | 4.18
profit

profit. Since the available machine time is limited, we cannot arbitrarily
increase the output of any one product. Production must be allocated
among products 1, 2, 3, 4 so that profits will be maximized without ex-
ceeding the maximum number of machine hours available on any one
of the groups of machines.

Let us first consider the restrictions imposed by the availability of
machine time. Machines of type A are in use a total of

1.5z; + zo + 2.4x3 + x4 hours per week,

since 1.5 hours are required for each unit of product 1, and z; units of
product 1 are produced; and so on for the remaining products. Also, the
total time used is the sum of the times required to produce each product.
The total amount of time used cannot be greater than 2000 hours. Mathe-
matically, this means that

1.51}1 + ) + 241?3 + Ty S 2000. (1—1)

It would not be correct to set the total hours used equal to 2000 for
type A machines, since there may not be any combination of production
rates that would use each of the three groups of machines to capacity.
We do not wish to predict which machines will be used to capacity. In-
stead, we introduce a “less than or equal to” sign; the solution of the
problem will indicate which machines will be used at full capacity.

For machines B and C we can write

z; + 5z5 + z3 + 3.5z4 < 8000 (type B machines), (1-2)

1.5z, + 3z2 + 3.523 + z4 < 5000 (type C machines). (1-3)

Since no more than the available machine time can be used, the variables
z; must satisfy the above three inequalities. Furthermore, we cannot
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produce negative quantities; that is, we have either a positive amount of
any product or none at all. Thus the additional restrictions

120, 220, 2320, 2,20 (1-4)

require that the variables be non-negative.
We have now determined all the restrictions on the variables. If x;
units of product j are produced, the weekly profit z is

= 5.24z; + 7.30z2 + 8.34x3 + 4.18z4. (1-5)

We wish to find values of the variables which will satisfy restrictions
(1-1) through (1-4) and maximize the profit (1-5).

The above example is clearly a programming problem. Moreover, it is
a linear programming problem because the restrictions and the function
to be maximized involve only linear relations among the variables.

In practice, it may not be true that the profit derived from the sale of
any one product is directly proportional to the number of units sold. More
generally, the profit will be some function of the quantities produced, i.e.,

z = f(xly T2, T3, I4)~

If this function is not of.the form (1-5), we have a nonlinear rather than a
linear programming problem. For example, if the profit function were
of the form

z = 524z} + 7.302}/% + 8.34z3'? + 4.15z}/%, (1-6)

then the determination of the variables which satisfy the constraints (1-1)
through (1-4) and maximize Eq. (1-6) would be a special case of a non-
linear programming problem.

1-4 Linear programming. The preceding example illustrated how a
linear programming problem and a particular case of a nonlinear program-
ming problem can arise in practice. Linear programming is concerned with
solving a very special type of problem—one in which all relations among
the variables are linear both in the constraints and the function to be
optimized. The general linear programming problem can be described as
follows: Given a set of m linear inequalities or equations in r variables, we
wish to find non-negative values of these variables which will satisfy the con-
straints and maximize or minimize some linear function of the variables.

Mathematically, this statement means: We have m inequalities or
equations in r variables (m can be greater than, less than, or equal to r)
of the form:

a;1T; + QT2 + - - +airx1‘{2;=; Slbh 1= 11"'1m7 (1_7)
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where for each constraint one and only one of the signs <, =, > holds,

but the sign may vary from one constraint to another. We seek values of
the variables z; satisfying (1-7) and

;>0 j=1,...,r (1-8)

which maximize or minimize a linear function
z=cz1+ -+ . (1-9)

The a;j, bs, ¢; are assumed to be known constants.

We have thus formulated the general linear programming problem
which, in mathematical terms, can be represented by (1-7) through (1-9).
A programming problem is linear if, in the constraints and function to be
optimized, the variables appear only as linear forms. A linear form in-
volving n variables z; is an expression of the type aiz; + - - - + a.zn, + b,
where the a; and b are constants. It is very important to see what the
assumption of linearity implies. Intuitively, linearity implies that products
of the variables, such as z,z5, powers of variables, such as z2, and com-
binations of variables, such as a,z; + a2 log z2, cannot be allowed.

In more general terms, linearity can be characterized by certain additive
and multiplicative properties. In the context of the above example,
additivity means: If we use ¢; hours on machine A to make product 1,
and £, heours to make product 2, the time on machine A devoted to products
1and 2is¢; + ¢5. In this case, the additivity property seems quite reason-
able if the time required to convert from product 1 to 2 is negligible. How-
ever, not all physical processes behave in this way. If we mix several liquids
of different chemical composition, it is, in general, not true that the total
volume of the mixture is the sum of the volumes of the individual con-
stituents. This is an example of a case where additivity may not hold.

The multiplicative property requires: (1) If it takes one hour to make a
single item on a given machine, it takes ten hours to make ten parts; this
also seems quite reasonable. (2) The total profit from selling a given num-
ber of units of a product is the unit profit times the number of units sold;
this is not always true. In general, the profit is not directly proportional
to the number of units sold even if the selling price is constant, since
manufacturing costs per unit may vary with the number of units made.
Thus the linearity implied in a linear programining problem is not always
expected to be an absolutely accurate representation of the real world.
Fortunately, the assumed linearity is often a close enough approximation
of actual conditions so that it can provide very useful answers.

One other important restriction is inherent in a linear programming
problem: It is assumed that the variables z; can take on any values al-
lowed by the restrictions (1-7) and {1-8); in other words, we cannot, for
‘example, require that the variables assume only integral values. If the
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additional restriction is imposed that the variables must be integers, then,
in general, we do not have any longer a linear programming problem.
Actual situations often require that the variables be integers; such problems
are frequently solved by linear programming, and the answers are rounded
off to the nearest integers which satisfy the constraints. This may or may
not be a valid approximation. In general, the approximation is good if the
solution requires that a large number of units of each variable be used.
Since, in the example discussed in Section 1-3, the production is assumed
to be continuous, it is not necessary that the optimal z; be integers. Of
course, in practice no attempt would be made to schedule weekly produc-
tion down to a fraction of a unit.

The assumption that the variables can vary continuously goes somewhat
deeper than indicated in the previous paragraph. Fundamentally, every-
thing in the real world comes in discrete units, and nothing is infinitely
divisible. However, the basic building blocks (molecules, photons, etc.)
are often so small in comparison with the quantities under consideration
that for all practical purposes (i.e., to ten or fifteen decimal places), it can
be assumed that the physical quantity is continuously variable. The real
difficulty appears when the discrete units are not small in comparison with
the magnitudes of the variables. In situations of this kind, one must be
concerned about the discreteness of the variables.

The function to be optimized, (1-9), is called the objective function. Note
that ho constant. term appears in the objective function, i.e., we do not
write z = 2.7_; ¢;z; + ¢. The reason for this is simple. The values of
the z; which optimize z are completely independent of any additive con-
stant ¢. Hence, if there is such a constant, it can be ignored during the
process of determining the best z;, and added to z after the problem has
been solved.

Mathematically, the constraints (1-8) which require that the variables
z; be non-negative do not differ from the constraints (1--7). However,
when solving a linear programming problem, the non-negativity constraints
are handled differently from the other constraints. For this reason, we
shall refer to the non-negativity constraints as non-negativity restrictions,
while the term constraint will be used to denote constraints other than the
non-negativity restrictions. Thus when we say that there are m constraints
on the problem, we mean that there are m constraints of the form (1-7).
Then in addition, there are the non-negativity restrictions. This termi-
nology will save some confusion later.

Any set of z; which satisfies the constraints (1-7) will be called a solution
to the linear programming problem. Any solution which satisfies the non-
negativity restrictions is called a feastble solution. Any feasible solution
which optimizes the objective function is called an optimal feastble solution.
The task of solving a linear programming problem consists in finding an
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optimal feasible solution. Normally, there will be an infinite number of
feasible solutions to a linear programming problem. Out of all these solu-
tions, we must find one which optimizes the objective function.

1-5 The transportation problem; another example. In practice, linear
programming has been of particular significance in its application to so-
called transportation problems. To provide the reader with a little more
feeling for the nature of linear programming, we shall discuss these briefly.
Later two chapters will be devoted to solving transportation problems.

A typical transportation problem can be described as follows: Given
amounts of a uniform product are available at each of a number of different
origins (e.g., warehouses). We wish to send specified amounts of the prod-
uct to each of a number of different destinations (e.g., retail outlets). The
cost of shipping one unit amount from any one origin to any one destina-
tion is known. Assuming that it is possible to ship from any one warehouse
to any one retail outlet, we are interested in determining the minimum-
cost routing from the warehouses to the retail outlets.

We shall suppose that there are m origins and n outlets. Take z;; to be
the number of units shipped from origin 7 to destination 7. Note that here
it is convenient to use a double subscript since it simplifies the notation.
For a given ¢ (warehouse), there are n possible j-values (retail outlets to
which units can be shipped). Hence we have a total of mn different z;;.
Since negative amounts cannot be shipped, we must have z;; > 0 for all
1, J.

Let a; be the number of units of the product available at origin 7 and b;
the number of units required at destination j. We cannot ship more goods
from any one origin than are available at that origin. Hence summing
over all destinations, we have

inj=zil+zi2+"'+$insai, i=1,...,m. (1-10)

j=1

There are m such constraints, one for each origin. We must supply each
destination with the number of units desired; thus

Dzii=zi+  + Tmj=b; Jj=1,...,n  (1-11)
=1

The total amount received at any destination is the sum over the amounts
received from each origin. The needs of the outlets can be satisfied if and
only if

n

i a; > Y b, (1-12)
t=1

j=1

We assume that this is the case.



