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Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semisimple
Lie algebras through a classification of “primitive invariants.” Using somewhat
unconventional notation inspired by the Feynman diagrams of quantum field theory,
the invariant tensors are represented by diagrams; severe limits on what simple
groups could possibly exist are deduced by requiring that irreducible representations
be of integer dimension. The method provides the full Killing-Cartan list of all
possible simple Lie algebras, but fails to prove the existence of F'y, Fg, E7 and Ej.

One simple quantum field theory question started this project; what is the group-
theoretic factor for the following Quantum Chromodynamics gluon self-energy di-

agram
@— =7 (1.1)

I first computed the answer for SU(n). There was a hard way of doing it, using
Gell-Mann f;;x and d;; coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “birdtracks” method that will
be developed here. It works nicely for SO(n) and Sp(n) as well. Out of curiosity,
I wanted the answer for the remaining five exceptional groups. This engendered
further thought, and that which I learned can be better understood as the answer to
a different question. Suppose someone came into your office and asked, “On planet
Z, mesons consist of quarks and antiquarks, but baryons contain three quarks in
a symmetric color combination. What is the color group?” The answer is neither
trivial nor without some beauty (planet Z quarks can come in 27 colors, and the
color group can be Ej).

Once you know how to answer such group-theoretical questions, you can answer
many others. This monograph tells you how. Like the brain, it is divided into two
halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calculations are carried out for
unitary, orthogonal, and symplectic groups (chapters 3—15). Except for the “negative
dimensions” of chapter 13 and the “spinsters” of chapter 14, none of that is new, but
the methods are helpful in carrying out daily chores, such as evaluating Quantum
Chromodynamics group-theoretic weights, evaluating lattice gauge theory group
integrals, computing 1 /N corrections, evaluating spinor traces, evaluating casimirs,
implementing evaluation algorithms on computers, and so on.

The interesting half, chapters 16-21, describes the “‘exceptional magic” (a new
construction of exceptional Lie algebras), the “negative dimensions” (relations be-
tween bosonic and fermionic dimensions). Open problems, links to literature, soft-
ware and other resources, and personal confessions are relegated to the epilogue,
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monograph’s Web page birdtracks.eu. The methods used are applicable to field-
theoretic model building. Regardless of their potential applications, the results are
sufficiently intriguing to justify this entire undertaking. In what follows we shall for-
get about quarks and quantum field theory, and offer instead a somewhat unorthodox
introduction to the theory of Lie algebras. If the style is not Bourbaki [29], it is not
so by accident.

There are two complementary approaches to group theory. In the canonical ap-
proach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing [189] and Cartan [43] used to obtain the
complete classification of semisimple Lie algebras, and which has been brought to
perfection by Coxeter [67] and Dynkin [105]. There exist many excellent reviews
of applications of Dynkin diagram methods to physics, such as refs. [312, 126].

Inthe tensorial approach pursued here, the bases are arbitrary, and every statement
is invariant under change of basis. Tensor calculus deals directly with the invariant
blocks of the theory and gives the explicit forms of the invariants, Clebsch-Gordan
series, evaluation algorithms for group-theoretic weights, etc.

The canonical approach is often impractical for computational purposes, as a
choice of basis requires a specific coordinatization of the representation space. Usu-
ally, nothing that we want to compute depends on such a coordinatization; physical
predictions are pure scalar numbers (“color singlets”), with all tensorial indices
summed over. However, the canonical approach can be very useful in determining
chains of subgroup embeddings. We refer the reader to refs. [312, 126] for such
applications. Here we shall concentrate on tensorial methods, borrowing from Car-
tan and Dynkin only the nomenclature for identifying irreducible representations.
Extensive listings of these are given by McKay and Patera [234] and Slansky [312].

To appreciate the sense in which canonical methods are impractical, let us consider
using them to evaluate the group-theoretic factor associated with diagram (1.1)
for the exceptional group Eg. This would involve summations over 8 structure
constants. The Cartan-Dynkin construction enables us to construct them explicitly;
an Ej structure constant has about 2483 /6 elements, and the direct evaluation of the
group-theoretic factor for diagram (1.1) is tedious even on a computer. An evaluation
in terms of a canonical basis would be equally tedious for SU(16); however, the
tensorial approach illustrated by the example of section 2.2 yields the answer for all
SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial ap-
proach to exceptional groups. The other is the desire to understand their geometrical
significance. The Killing-Cartan classification is based on a mapping of Lie alge-
bras onto a Diophantine problem on the Cartan root lattice. This yields an exhaustive
classification of simple Lie algebras, but gives no insight into the associated geome-
tries. In the 19th century, the geometries or the invariant theory were the central
question, and Cartan, in his 1894 thesis, made an attempt to identify the primitive
invariants. Most of the entries in his classification were the classical groups SU (n),
SO(n), and Sp(n). Of the five exceptional algebras, Cartan [44] identified G ; as the
group of octonion isomorphisms and noted already in his thesis that £'7 has a skew-
symmetric quadratic and a symmetric quartic invariant. Dickson characterized E g
as a 27-dimensional group with a cubic invariant. The fact that the orthogonal, uni-
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tary and symplectic groups were invariance groups of real, complex, and quaternion
norms suggested that the exceptional groups were associated with octonions, but it
took more than 50 years to establish this connection. The remaining four exceptional
Lie algebras emerged as rather complicated constructions from octonions and Jordan
algebras, known as the Freudenthal-Tits construction. A mathematician’s history of
this subject is given in a delightful review by Freudenthal [130]. The problem has
been taken up by physicists twice, first by Jordan, von Neumann, and Wigner [173],
and then in the 1970s by Giirsey and collaborators [149, 151, 152]. Jordan et al.’s
effort was a failed attempt at formulating a new quantum mechanics that would ex-
plain the neutron, discovered in 1932. However, it gave rise to the Jordan algebras,
which became a mathematics field in itself. Giirsey et al. took up the subject again
in the hope of formulating a quantum mechanics of quark confinement; however,
the main applications so far have been in building models of grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical for the
evaluation of group-theoretic weights. The reason is this: the construction involves
[3 x 3] octonionic matrices with octonion coefficients, and the 248-dimensional
defining space of E’g is written as a direct sum of various subspaces. This is conve-
nient for studying subgroup embeddings [291], but awkward for group-theoretical
computations.

The inspirdtion for the primitive invariants construction came from the axiomatic
approach of Springer [314, 315] and Brown [34]: one treats the defining representa-
tion as a single vector space, and characterizes the primitive invariants by algebraic
identities. This approach solves the problem of formulating efficient tensorial al-
gorithms for evaluating group-theoretic weights, and it yields some intuition about
the geometrical significance of the exceptional Lie groups. Such intuition might be
of use to quark-model builders. For example, because SU(3) has a cubic invariant
€*°q,qpq., Quantum Chromodynamics, based on this color group, can accommo-
date 3-quark baryons. Are there any other groups that could accommodate 3-quark
singlets? As we shall see, G2, Fy, and Eg are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construc-
tion of exceptional groups yields several unexpected results. First, it generates in a
somewhat magical fashion a triangular array of Lie algebras, depicted in figure 1.1.
This is a classification of Lie algebras different from Cartan’s classification; in this
new classification, all exceptional Lie groups appear in the same series (the bottom
line of figure 1.1). The second unexpected result is that many groups and group
representations are mutually related by interchanges of symmetrizations and anti-
symmetrizations and replacement of the dimension parameter n by —n. I call this
phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of all the magic and the strange
diagrammatic notation, the resulting manuscript is in essence not very different from
Wigner’s [345] 1931 classic. Regardless of whether one is doing atomic, nuclear, or
particle physics, all physical predictions (“spectroscopic levels”) are expressed in
terms of Wigner’s 3n-j coefficients, which can be evaluated by means of recursive
or combinatorial algorithms.

Parenthetically, this book is not a book about diagrammatic methods in group
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Figure 1.1 The “Magic Triangle” for Lie algebras. The “Magic Square” is framed by the
double line. For a discussion, consult chapter 21.

theory. If you master a traditional notation that covers all topics in this book in a
uniform way, more elegantly than birdtracks, more power to you. I would love to
learn it.



Chapter Two

A preview

The theory of Lie groups presented here had mutated greatly throughout its gen-
esis. It arose from concrete calculations motivated by physical problems; but as
it was written, the generalities were collected into introductory chapters, and the
applications receded later and later into the text.

As a result, the first seven chapters are largely a compilation of definitions and
general results that might appear unmotivated on first reading. The reader is advised
to work through the examples, section 2.2 and section 2.3 in this chapter, jump to
the topic of possible interest (such as the unitary groups, chapter 9, or the E g family,
chapter 17), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-theoretic
tools. They are not particularly sophisticated, and they rest on a few simple ideas.
The text is long, because various notational conventions, examples, special cases,
and applications have been laid out in detail, but the basic concepts can be stated in a
few lines. We shall briefly state them in this chapter, together with several illustrative
examples. This preview presumes that the reader has considerable prior exposure
to group theory; if a concept is unfamiliar, the reader is referred to the appropriate
section for a detailed discussion.

2.1 BASIC CONCEPTS

A typical quantum theory is constructed from a few building blocks, which we shall
refer to as the defining space V. They form the defining multiplet of the theory —
for example, the “quark wave functions” ¢,. The group-theoretical problem consists
of determining the symmetry group, i.e., the group of all linear transformations

g, =Gy a,b=1,2,...,n,

which leaves invariant the predictions of the theory. The [n X n| matrices G form the
defining representation (or “rep” for short) of the invariance group G. The conjugate
multiplet § (“antiquarks”) transforms as

qlu — Gabqb .
Combinations of quarks and antiquarks transform as tensors, such as
Paasm’* =Gab®, a® prger?,
Gab’, ™ =G’ Gv*G 4

(distinction between G,® and G?;, as well as other notational details are explained
in section 3.2). Tensor reps are plagued by a proliferation of indices. These indices
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can either be replaced by a few collective indices:

(=),

g, = Gaqs, 2.1)
or represented diagrammatically:
a —— ——f a——<——f
b —— G et € — | e €
c = d ¢ == ——>—d

(Diagrammatic notation is explained in section 4.1.) Collective indices are conve-
nient for stating general theorems; diagrammatic notation speeds up explicit calcu-
lations.

A polynomial

H(G,7,...,s) =hg "q°r°...5.

is an invariant if (and only if) for any transformation G € G and for any set of
vectors q,T, s, . . . (see section 3.4)

H(Gq,Gr,...Gs) = H(q,F,...,8). 2.2)

An invariance group is defined by its primitive invariants, i.e., by a list of the
elementary “singlets” of the theory. For example, the orthogonal group O(n) is
defined as the group of all transformations that leaves the length of a vector invariant
(see chapter 10). Another example is the color SU(3) of QCD that leaves invariant
the mesons (¢q) and the baryons (gqq) (see section 15.2). A complete list of primitive
invariants defines the invariance group via the invariance conditions (2.2); only those
transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant tensors
in order to define them. For example, the O(n) group is defined by the requirement
that it leaves invariant a symmetric and invertible tensor g, = gpa, det(g) # 0.
Such definition is basis independent, while a component definition g7 = 1, g12 =
0, go2 = 1, .. .relies on a specific basis choice. We shall define all simple Lie groups
in this manner, specifying the primitive invariants only by their symmetry and by
the basis-independent algebraic relations that they must satisfy.

These algebraic relations (which I shall call primitiveness conditions) are hard to
describe without first giving some examples. In their essence they are statements of
irreducibility; for example, if the primitive invariant tensors are § ¢, hqpe and hePc,
then hgp.h°® must be proportional to §¢, as otherwise the defining rep would be
reducible. (Reducibility is discussed in section 3.5, section 3.6, and chapter S.)

The objective of physicists’ group-theoretic calculations is a description of the
spectroscopy of a given theory. This entails identifying the levels (irreducible mul-
tiplets), the degeneracy of a given level (dimension of the multiplet) and the level
splittings (eigenvalues of various casimirs). The basic idea that enables us to carry
this program through is extremely simple: a hermitian matrix can be diagonalized.
This fact has many names: Schur’s lemma, Wigner-Eckart theorem, full reducibility
of unitary reps, and so on (see section 3.5 and section 5.3). We exploit it by con-
structing invariant hermitian matrices M from the primitive invariant tensors. The



