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PREFACE

The aim of this book is to bring together and present some of the most important
recent ideas and methods in high-dimensional covariance estimation. It provides
computationally feasible methods and their conceptual underpinnings for sparse
estimation of large covariance matrices. The major unifying theme is to reduce sparse
covariance estimation to that of estimating suitable regression models using penalized
least squares. The framework has the great advantage of reducing the unintuitive
and challenging task of covariance estimation to that of modeling a sequence of
regressions. The book is intended to serve the needs of researchers and graduate
students in statistics and various areas of science, engineering, economics and finance.
Coverage is at an intermediate level, familiarity with the basics of regression analysis,
multivariate analysis, and matrix algebra is expected.

A covariance matrix, the simplest summary measure of dependence of several
variables, plays prominent roles in almost every aspect of multivariate data analy-
sis. In the last two decades due to technological advancements and availability of
high-dimensional data in areas like microarray, e-commerce, information retrieval,
fMRI, business, and economy, there has been a growing interest and great progress
in developing computationally fast methods that can handle data with as many as
thousand variables collected from only a few subjects. This situation is certainly not
suited for the classical multivariate statistics, but rather calls for a sort of “fast and
sparse multivariate methodology.”

The two major obstacles in modeling covariance matrices are high-dimensionality
(HD) and positive-definiteness (PD). The HD problem is familiar from regression
analysis with a large number of covariates where the penalized least squares with
the Lasso penalty is commonly used to obtain computationally feasible solutions.
However, the PD problem is germane to covariances where one hopes to remove it by
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X PREFACE

infusing regression-based ideas into principal component analysis (PCA), Cholesky
decomposition, and Gaussian graphical models (inverse covariance matrices), etc.

The primary focus of current research in high-dimensional data analysis and
hence covariance estimation has been on developing feasible algorithms to compute
the estimators. There has been less focus on inference and the effort is mostly devoted
to establishing consistency of estimators when both the sample size and the number
of variables go to infinity in certain manners depending on the nature of sparsity of the
model and the data. At present, there appears to be a sort of disconnection between the
theory and practice where further research is hoped to bridge the gap. Our coverage
follows mostly the recent pattern of research in the HD data literature by focusing
more on the algorithmic aspects of the high-dimensional covariance estimation. This
is a rapidly growing area of statistics and machine learning, less than a decade old,
but has seen tremendous growth in such a short time. Deciding what to include in
the first book of its kind is not easy as one does not have the luxury of choosing
results that have passed the test of time. My selection of topics has been guided by
the promise of lasting merit of some of the existing and freshly minted results, and
personal preferences.

The book is divided into two parts. Part I, consisting the first three chapters,
deals with the more basic concepts and results on linear regression models, high-
dimensional data, regularization, and various models/estimation methods for covari-
ance matrices. Chapter 1 provides an overview of various regression-based methods
for covariance estimation, Chapter 2 introduces several examples of high-dimensional
data and illustrates the poor performance of the sample covariance matrix and the need
for its regularization. A fairly comprehensive review of mathematical and statistical
properties of the covariance matrices along with classical covariance estimation re-
sults is provided in Chapter 3. Part II is concerned with the modern high-dimensional
covariance estimation. It covers shrinkage estimation of covariance matrices, sparse
PCA, Gaussian graphical models, and penalized likelihood estimation of inverse co-
variance matrices. Chapter 6 deals with banding, tapering, and thresholding of the
sample covariance matrix or its componentwise penalization. The focus of Chapter 7
is on applications of covariance estimation and singular value decomposition (SVD),
to multivariate regression models for high-dimensional data.

The genesis of the book can be traced to teaching a topic course on covariance
estimation in the Department of Statistics at the University of Chicago, during a
sabbatical in 2001-2002 academic year. I have had the benefits of discussing various
topics and issues with many colleagues and students including Anindya Bahdra,
Lianfu Chen, Michael Daniels, Nader Ebrahimi, Tanya Garcia, Shuva Gupta, Jianhua
Huang, Priya Kohli, Soumen Lahiri, Mehdi Madoliat, Ranye Sun, Adam Rothman,
Wei Biao Wu, Dale Zimmerman, and Joel Zinn. Financial support from the NSF in the
last decade has contributed greatly to the book project. The editorial staff at John Wiley
& Sons and Steve Quigley were generous with their assistance and timely reminders.

MOHSEN POURAHMADI

College Station, Texas
April, 2013
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CHAPTER 1

INTRODUCTION

Is it possible to estimate a covariance matrix using the regression methodology? If so,
then one may bring the vast machinery of regression analysis (regularized estimation,
parametric and nonparametric methods, Bayesian analysis, . .. ) developed in the last
two centuries to the service of covariance modeling.

In this chapter, through several examples, we show that sparse estimation of high-
dimensional covariance matrices can be reduced to solving a series of regularized
regression problems. The examples include sparse principal component analysis
(PCA), Gaussian graphical models, and the modified Cholesky decomposition of
covariance matrices. The roles of sparsity, the least absolute shrinkage and smooth
operator (Lasso) and particularly the soft-thresholding operator in estimating the
parameters of linear regression models with a large number of predictors and large
covariance matrices are reviewed briefly.

Nowadays, high-dimensional data are collected routinely in genomics, biomedical
imaging, functional magnetic resonance imaging (fMRI), tomography, and finance.
Let X be an n x p data matrix where n is the sample size and p is the number of
variables. By the high-dimensional data usually it is meant that p is bigger than
n. Analysis of high-dimensional data often poses challenges which calls for new
statistical methodologies and theories (Donoho, 2000). For example, least-squares
fitting of linear models and classical multivariate statistical methods cannot handle
high-dimensional X since both rely on the inverse of X' X which could be singular or
not well-conditioned. It should be noted that increasing n and p each has very different
and opposite effects on the statistical results. In general, the focus of multivariate
analysis is to make statistical inference about the dependence among variables so

High-Dimensional Covariance Estimation, First Edition. Mohsen Pourahmadi.
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4 INTRODUCTION

that increasing n has the effect of improving the precision and certainty of inference,
whereas increasing p has the opposite effect of reducing the precision and certainty.
Therefore the level of detail that can be inferred about correlations among variables
improves with increasing n but it deteriorates with increasing p.

The dimension reduction and variable selection are of fundamental importance
for high-dimensional data analysis. The sparsity principle which assumes that only
a small number of predictors contribute to the response is frequently adopted as
the guiding light in the analysis. Armed with the sparsity principle, a large number
of estimation approaches are available to estimate sparse models and select the
significant variables simultaneously. The Lasso method introduced by Tibshirani
(1996) is one of the most prominent and popular estimation methods for the high-
dimensional linear regression models.

Quantifying the interplay between high-dimensionality and sparsity is important
in the modern data analysis environment. In the classic setup, usually p is fixed and
n grows so that

P«
n

However, in the modern high-dimensional setup where both p and n can grow,
estimating accurately a vector B with p parameters is a real challenge. By invoking
the sparsity principle one assumes that only a small number, say s(f), of the entries
of B is nonzero and then proceeds in developing algorithms to estimate the nonzero
parameters. Of course, it is desirable to establish the statistical consistency of the
estimates under a new asymptotic regime where both n, p — oc. Interestingly, it has
emerged from such asymptotic theory that for the consistency to hold in some generic
problems, the dimensions n, p of the data and the sparsity index of the model must
satisfy

|
°§” - s(B) < L. (1.1)

The ratio log p/n does play a central role in establishing consistency results for
variety of covariance estimators proposed for high-dimensional data in recent years
(Biihlmann and van de Geer, 2011).

1.1 LEAST SQUARES AND REGULARIZED REGRESSION

The idea of least squares estimation of the regression parameters in the familiar linear
model

Y=XB+e, (1.2)

has served statistics quite well when the sample size n is large and p is fixed and
small, say less than 50. The principle of model simplicity or parsimony coupled
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with the techniques of subset, forward, and backward selections have been developed
and used to fit such models either for the purpose of describing the data or for its
prediction.

The whole machinery of least-squares fails or does not work well for the high-
dimensional data where the ubiquitous X’X matrix is not invertible. The traditional
remedy is the ridge regression (Hoerl and Kennard, 1970), which replaces the residual
sum of squares of errors by its penalized version:

QB =IIY — XBIP+2)_ 181, (1.3)
J

where A > 0 is a penalty controlling the length of the vector of regression parameters.
The unique ridge solution is

Brigge = (X'X + AD)7' XY, (1.4)

which amounts to adding A to the diagonal entries of X' X, and then inverting it. The
ridge solution works rather well in the presence of multicollinearity and when p is not
too large; however, in general it does not induce sparsity in the model. Nevertheless,
it points to the fruitful direction of penalizing a norm of the high-dimensional vector
of coefficients (parameters) in the model.

In the modern context of high-dimensional data, the standard goals of regression
analysis have also shifted toward:

(I) construction of good predictors where the actual values of coefficients in the
model are irrelevant,

(II) giving causal interpretations of the factors and determining which variables
are more important.

It turns out that regularization is important for both of these goals, but the ap-
propriate magnitude of the regularization parameter depends on which goal is more
important for a given problem. Historically, Goal (II) has been the engine of the
statistical developments and the thought of irrelevancy of the parameter values was
not imaginable. However, nowadays Goal (I) is the primary focus of developing algo-
rithms in the machine learning theory (Biihlmann and van de Geer, 2011). In general,
the pair (Y, X) is usually modeled nonparametrically as

Y =m(X) + e, (1.5)

with E(e) = 0 and m(-) a smooth unknown function. Then using a family of ba-
sis functions b;(X), j =1,2,---, m(-) is approximated closely with the sums:
Zj;, Bib;j(X), for a large p, where B = (B;,---, B,) is a vector of coefficients.
Of course, when b;(X) = X is the jth column of the design matrix, then the ap-
proximation scheme reduces to the familiar linear regression model.
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In the high-dimensional contexts, the ridge or £, penalty on ||B]|3 = le ﬂf
has lost some of its attractions to competitors like the Lasso which penalizes large
values of the sum Zj;, [B;1 = lIBlli and hence forces many of the smaller §;’s to
be estimated by zero. This zeroing of the coefficients is seen as model selection in
the sense that only variables with 8; # 0 are included. To this end, perhaps a more
natural penalty function is

P
P(B) =) 1(B; #0) = IBllo, (1.6)

j=1

which counts the number of nonzero coefficients. However, the ¢) norm is not an easy
function to work with so far as optimization is concerned as it is neither smooth nor
convex. Fortunately, the Lasso penalty is the closest convex member of the family of
penalty functions of the form [[B||; = le [B]*, a > 0to (1.6).

1.2 LASSO: SURVIVAL OF THE BIGGER

In this section, we indicate that the Lasso regression which corresponds to replacing
the ridge penalty in (1.3) by the £, penalty on the coefficients leads to more sparse
solutions than the ridge penalty. It forces to zero the smaller coefficients, but keeps
the bigger ones around.

The Lasso regression is one of the most popular approaches for selecting signifi-
cant variables and estimating regression coefficients simultaneously. It corresponds
to a penalized least-squares regression with the ¢; penalty on the coefficients (Tib-
shirani, 1996). Compared to the ridge penalty, it minimizes the sum of squares of
residuals subject to a constraint on the sum of absolute values of the regression
coefficients:

|
Q(ﬁ)=§llY—XﬁII2+/\;|ﬁ,—|, (1.7)

where A > 0 is a penalty or tuning parameter controlling the sparsity of the model
or the magnitude of the estimates. It is evident that for larger values of the tuning
parameter A, the Lasso estimate E(A) obtained by minimizing (1.7) shrinks or forces
the regression coefficients toward zero. Since the regularization parameter controls
the model complexity, its proper selection is of critical importance in the applications
of the Lasso and other penalized least-squares/likelihood methods. In most of what
follows in the sequel, it is assumed that A is fixed and known.

Unlike the closed-form ridge solution in (1.4), due to the nature of the constraint
in (1.7), its solution is nonlinear in the responses Y;’s, see (1.11). Fundamental to
understanding and computing the Lasso solution is the soft-thresholding operator.
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Its relevance is motivated using the simple problem of minimizing the function (1.7)
forn = p = 1, or for a generic observation y and X = 1:

1
0(B) = §<y—ﬂ)2+xlﬂ|, (1.8)

for a fixed A. Note that |B| is a differentiable function at 8 # 0 and the derivative
Q(-) with respect to such a g is

Q'(B)=—y+B+x-sign(B) =0, (1.9)

where sign(p) is defined through |B| = 8 - sign(8). By convention, its value at zero
is set to be zero. The explicit solution of B in terms of y, A from (1.9) is

B(r) = sign(y)(|y| — M)+, (1.10)

where (x), = x,if x > 0 and 0, otherwise (see Section 2.5 for details). This sim-
ple closed-form solution reveals the following two fundamental characteristics of the
Lasso solution:

1. Increasing the penalty A will shrink the Lasso estimate E(A) toward 0. In fact,
as soon as A exceeds |y|, the Lasso estimate (1) becomes zero and will remain
so thereafter

2. The Lasso solution is piecewise linear in the penalty A (see Fig. 1.1).
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FIGURE 1.1 (a) Plot of the soft-thresholding operator for A = 2. (b) Piecewise linearity of
Lasso estimator for y = 2.



