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Preface

Why another calculus book? One reason is that this is not the conventional calculus
book. I agree with de Finetti (1906—), who says in his Theory of Probability:

To add one more [book] would certainly be a presumptuous undertaking if I thought in
terms of doing something better, and a useless undertaking if I were to content myself
with producing something similar to the “standard” type.

My second reason comes from a remark L. E. Dickson (1874-1954) once made in
class with respect to his History of the Theory of Numbers:

Every scientist owes a labor of love to his field.

This book is my labor of love.
The title, when the individual words are examined, explains the differences
between this book and the current standard calculus texts.

1. Methods

By methods I mean those methods that are widely used in mathematics, science,
and the applications of mathematics. Methods are important. It is by applying the
methods that we obtain the results of mathematics. We are rapidly approaching an
infinite amount of knowledge in the form of results, both in what is known and in what
is useful in the applications of mathematics to other fields. Thus it is increasingly futile
to teach mathematics by trying to cover the needed material; instead we must teach
the methods and how to re-create the material as it is needed. We must abandon the
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xvi Preface

methods of retrieval for those of regeneration. This may be an unscholarly attitude,
but there seems little hope for the future if we persist in going down the path of the
retrieval of knowledge.

2. of Mathematics

This means that the emphasis is on those methods that are peculiar to mathe-
matics, that is, its abstractions and its methods of reasoning. In my opinion these
should no longer be neglected. Some of the methods used in science generally are also
specifically mentioned. Finally, many of the philosophical questions that naturally
occur to the student while learning mathematics will be examined rather than cleverly
evaded or simply glossed over.

3. Applied to

The book shows how the methods of doing mathematics are applied to both
mathematics itself and to various uses of mathematics in other fields. Mathematicians
tend to view mathematics as an art done for art’s sake, but it is well known that the
majority of the students in the typical calculus class expect to use mathematics rather
than merely admire it. The neglect of either aspect, the innate beauty or the richness
of applications, is foolish.

4. Calculus

The calculus is probably the most useful single branch of mathematics. During
the many years of using mathematics daily in industry I found that the ability to do
simple calculus, easily and reliably, was the most valuable part of all the mathematics
I ever learned (of course, I also used more advanced mathematics whenever it was
appropriate). My views, therefore, were shaped by the almost daily use of the calculus
rather than by occasionally teaching the conventional courses. As a result this book
is different from the standard, thick, exhausting text that is crammed with specific
results and is short on the understanding of mathematics. The current form of calculus
texts has apparently been popular since at least the first appearance of Granville’s
Calculus in 1904.

Understanding the methods of the calculus is vital to the creative use of mathe-
matics in many areas even today. Without this mastery the average scientist or
engineer, or any other user of mathematics, will be perpetually stunted in devel-
opment, and will at best be able to follow only what the textbooks say; with mastery,
new things can be done, even in old, well-established fields. Progress involves, among
other things, the constant revision of the elements of a field, as well as the creation
of significant new results.

5. Probability

The calculus arose from problems in mechanics, and for all of the nineteenth
century and more, mechanical and electrical applications have dominated its use.
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These problems involve almost no probability. At present, probability plays a central
role in many fields, from quantum mechanics to information theory, and even older
fields use probability now that the presence of “noise” is officially admitted. The
newer aspects of many fields start with the admission of uncertainty.

Although many great mathematicians contributed to the early development of
probability theory, it was not generally considered an integral part of mathematics
until the publication of Feller’s (1906—1970) book (1950) [F] (references are found at
the end of Chapter 1). Since then probability has played an increasing role in mathe-
matics.

6. and Statistics

Statistics has had an even slower acceptance in mathematics than probability.
Yet statistics is central to much of our lives. We are deluged by statistics from surveys,
polls, advertisements, government publications, and even data from laboratory experi-
ments where we have gone beyond the deterministic world view to the acceptance of
randomness as being fundamental.

Furthermore, it is probable that a large fraction of the students enrolled in the
calculus course are there because the course is needed for statistics. Statistics without
the calculus can only be of the cookbook variety. If the student is ever to master and
use the simple concept of the distribution of a statistic (the values of a statistic that can
be expected from repeated trials of the same experiment), then it is vital that the
calculus be mastered. Continuous distributions are basic to the theory of probability
and statistics, and the calculus is necessary to handle them with any ease.

It is understandable that many mathematicians do not like statistics, but it should
be taught early so that the concepts are absorbed by the student’s flexible, adaptable
mind before it is too late. I believe that the student’s needs require that some parts of
mathematical statistics be included in the mathematics curriculum.

This book is not a course in probability or statistics; only the more mathematical
parts are discussed at all. The much more difficult part of statistics, often called data
analysis, is left entirely to the professional statisticians to teach. But using some of
the functions and ideas that arise in statistics to illustrate various principles of the
calculus and mathematics generally seems a sensible thing to do, rather than using
arbitrarily made up functions and artificial problems.

This book emphasizes discrete mathematics (mathematics associated mainly
with the integers) much more than does the usual calculus text. Increasingly these days
the application of mathematics to the real world involves discrete mathematics. As
most mathematicians who have examined the question at all closely know, discrete
mathematics often involves the use of continuous mathematics—the nature of the
discrete is often most clearly revealed through the continuous models of both calculus
and probability. Without continuous mathematics, the study of discrete mathematics
soon becomes trivial and very limited. Hence such topics as difference equations,
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generating functions, and numerical methods are scattered throughout the book as well
as in special sections and chapters. In particular, the idea is rejected that for computer
scientists a course in discrete mathematics without the calculus is adequate. The two
topics, discrete and continuous mathematics, are both ill served by being rigidly
separated.

All the material that is in the current standard calculus course cannot be covered
together with all these new things; the question is, can an equivalent amount be done?
It is going to be hard to find professors of mathematics with the needed backgrounds
and interests. Furthermore, they will have to feel that the classical course is now too
much out of date to be worth trying to save. The methods of mathematics are the main
topic of the course, not a long list of finished mathematical results with such highly
polished proofs that the poor student can only marvel at the results, and have no hope
of understanding how mathematics is actually created by practicing mathematicians.

The question remains, can all this be done within a course that is somewhat
equivalent to the standard calculus sequence? Many of the chapters in Part IV may be
omitted depending on the interests of the students, the needs of the curriculum, and
the desires of the professor. Will the attempt to teach the essence of mathematics,
extension, generalization, and abstraction, take more time from the course than it will
later save? Will the attempt to teach so many different ideas in the same course be too
much? On the other hand, what else is there to try in this age which is dominated by
both probability and statistics?
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