RAPID

Taming

DEVELOPMENT

Software

Schedules

e & 3 WY o
w A
|
gy >
y ™
3 R

Steve McConnell

L

China Machine Press

BRI R &

(R3hR)

Steve McConnell: Rapid Development (ISBN 1-55615-900-5)

Copyright © 1996 by Microsoft Corporation.

Original English language edition copyright © 1996 by Steve McConnell.

Published by arrangement with the original publisher, Microsoft Press, a division of Microsoft

Corporation, Redmond, Washington, U.S.A. All rights reserved.

ZISJB%EHWEH%@@‘ﬂﬁ(&”ﬁﬁ:&ﬁmmlﬂkﬁ)ﬁﬁcﬂﬂbﬁo *%Hﬂ&%;ﬁﬁ‘ﬁm, NG
LAEA N G P RA BN
RAUTA , BT

BN BICS: BF: 01-2002-5814
BEBEMSBE (CIP) ¥R

AR & (B3R) /EREZ /R (McConnell, S.) 3. —Jbat: HUAR Tl H ARt
2003.3

(G 3R R)

5483 Rapid Development

ISBN 7-111-11750-6

[M. IL#HEHFE-%EL V. TP311.52
ob [AR A B B AR CIPRURZ 7 (2003) 560135465

BUBR T RRAL (b PR B k225 MPECTS 100037)
HiLamig: £ =

b B 4 £ R A BR 2 R ERRY - 37 42 15 AL TR RAT R &AT
20034F3 A 55 1R 1 UK ERR)

787mm x 1092mm 1/16 - 42.25E05K

Ep%i: 0001-3 000/

FEHr: 58.007C

JUAS, AET, BT, GRIT, At RATHER

{EhRE BIE

WEE MU, Bimik R mE L e AR, sy ERERBENE
AR T 2R MERXPENLSE, EXEERBERERNATZFRAKE
H, MSIREE . FER RS, RENTLRSEERFBORREFRE S, TEILER S
BV 2 %8 1Lk} W6t B AR BF A BE R B AT 2, BRI = AR 2 BBl 2 B4, A UEERI T BF 5
BImE, HIEE T ARMEL, BEFEEANE, XAA¥FEME, HMEHA2BEEA BT
HE 1T U

A, ELRERAKBMMHENT, REMHTEI ™LA RRE, MEk AA#TRH i
B, XX EYLEE R R AABE VLA, BRI, ME MR REHT R -
BEERE, EREGEEARLZENEEE. NLARBRPHIRT, XESFRSERERT
BHAE R RO HERBRENSHIM A FZEBEEZL, FHik, 51#—#EIMEFE T
BHLEAOE R B ENEFTE LN ZREFROMESNER, R SHtRER. BREEMI
F—W K b Z B

BB Tolk i Rt e B B SO B A IR A R R EIRS “HRENHERS". H19984EFF 1k,
BN TR TEE Al Tk, BiREMEFBEM L. 23 ILFENARE L, KI5
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ5{tt &2 WA RV TR
HHAIEXZ, WENIIA M E fh#bt o B3 H Tanenbaum, Stroustrup, Kernighan, Jim
Gray ¥ K& KM —HEHmER, U HENRZEAR" BEKREMR, EEET, FREE
B KEA SR, 0 IE AR TP A S AR

“SHEHBEAR" BB TAERBTERNMEENR N EE, BEANERAURETHE
MERITE S, AR ML T BIFEMERN TE; mEBOEEBHELSREEEMMETR
e, AMELZE I EBOPERER. €4, “HEIREAR" B2 TEE M,
X BEEFEE PRI T BRIFMOM, HBF 28RN EXBMMSE B, hit—BH
I ERBEST T T RER R

b & F R B A EMEM BERNZEBR, BF FXEIMTEYLB T KR
#EA—THHIGB . Nk, EEAFTGMASHBHENE, £ “REHEF” HEMRZT
HER=A RS AT EILEM : B THEIB2EAR" Z5b, XTREDRMBOb, WS TF RE
“GHMFRRBE" ; RS, 52X ETHEFEHFH “Schaum’s Outlines” RIVHAM “2XLE
WEIIRF RN A THRIEX =ZEA BN, RHdh T B e MRS, %
BEAAEETPERER. LEKE, HEKE, BRRERE, EERY, LEBERE,
MRk, Bk, PEBSRY. MRRIIKE., ALEZEKE, PEARKE. db&
BB MRAF, iRk, PR, MBERTRE, BMKRFE, BdtT¥kE. TEE

G BELWMIFAEF OEFEANE S KFMBFIAET BN SN TBHELFEAR %
FBIFERE", HROTBOEEE MR E .

X =P RN E IR ERAMNEEM SR, FEARKRKTENERMEER L
HAFEHITHEN . KPP FSEMYERM. L T., Stanford, U.C. Berkeley, C. M. U. F{ttF &8
KEPRA. AMUEZTERFGT. BAREW . RERS. HHEIGRSEH ., BUEE. SiFR
B, REGETE. BR¥, BES5NE. BHBCEESEAXFTREILS RSO RE,
mMHEEAKFE—ARNEABESRITEZT . ANHL=1THMNAE, FHEHLHRNILE
Fr|meck . X SERERNZMAKENESIZT, RELBETENNENERTHEE
MAZE,

BB . MM . —REE, ™ENER. BANRE, XEERERINE
BAETREMRIE, BROGEFRRERE, MEAMHERLERRNEX - LREFRNE
BB, #HMMHRRRRIGEERS RS, FEAFRDEMMEE RO TIERE
BIERA THRIE, RITWEKRIEWT .

i FHE{4 : hzedu@hzbook.com
BEREIE: (010) 68995264

BRAEMAL: CRHRXE T EREELS
BB SRS : 100037

v

EREFERS

(HelE REIT)
A
FEF
=Ly
&
&g
LES:

2 8

% A
2 # &
FRT
e e B
L
R
G

* £k
% B R
mAF
ERCES
N
Fml
WA 4=

Case Studies

2-1.
2-2,
3-1.
4-1.
5-1.
5-2.
6-1.
7-1.
7-2.
8-1.
8-2.
9-1.
10-1.
10-2,
11-1.
11-2.
12-1.
12-2.
12-3.
12-4.
13-1.

13-2.

14-1.
15-1.
15-2.
16-1.
16-2.

Rapid Development Without a Clear Strategy 6
Rapid Development with a Clear Strategy 25
Classic Mistakes 29

Lack of Fundamentals 52

Lack of Contractor Risk Management 82
Systematic Risk Management 103
Wandering in the Fuzzy Front End 124
Ineffective Lifecycle Model Selection 134
Effective Lifecycle Model Selection 159
Seat-of-the-Pants Project Estimation 164
Careful Project Estimation 200 _

A Successful Schedule Negotiation 229

The Requirements Club 234

The Requirements Club Revisited 246

A Disheartening Lunch with the Boss 250

A Highly Motivational Environment 270

You Call This a Team? - 274

A High-Performance Team 277

Typical Team-Member Selection 282

A Second High-Performance Team 294

Mismatch Between Project Objectives and
Team Structure 297

Good Match Between Project Objectives and
Team Structure 315

Managing Change Effectively 342
Ineffective Tool Use 346

Effective Tool Use 368

An Unsuccessful Project Recovery 372
A Successful Project Recovery 385

Xl

Xl

Reference Tables

2-1.

2-2.

3-1.
5-1.

0 G

5-7.
6-1.
7-1.
8-1.

IR S

8-9.
8-10.
8-11.
8-12.

9-1.
11-1.

Characteristics of Standard Approaches to Schedule-
Oriented Development 18

Code-Like-Hell Approach Compared to This Book's
Approach 24

Summary of Classic Mistakes 49

Levels of Risk Management 84

Most Common Schedule Risks 86

Potential Schedule Risks 87

Example of a Risk-Assessment Table 92

Example of a Prioritized Risk-Assessment Table 95

Means of Controlling the Most Common
Schedule Risks 98

Example of a “Top-10 Risks List” 101

Approximate Activity Breakdown by Size of Project 122
Lifecycle Model Strengths and Weaknesses 156

Estimate Multipliers by Project Phase 169

Function-Point Multipliers 176

Example of Computing the Number of Function Points 177
Example of a Risk-Quantification Estimate 180

Example of a Case-Based Estimate 181

Example of a Confidence-Factor Estimate 182

Exponents for Computing Schedules from Function Points 185
Shortest Possible Schedules 190

Efficient Schedules 194

Nominal Schedules 196

Example of a Single-Point-Estimation History 197
Example of a Range-Estimation History 198

Scheduling History of Word for Windows 1.0 208

Comparison of Motivators for Programmer Analysts vs.
Managers and the General Population 252

Reference Tables

11-2.

12-1.
13-1.
15-1.

15-2.

37-1.
37-2.

Team Performance Ranked Against Objectives That Teams
Were Told to Optimize 256

Practical Guidelines for Team Members and Leaders 295
Team Objectives and Team Structures 301

Example of Savings Realized by Switching from a 3GL to a 4GL
for 50 Percent of a 32,000 LOC Project 361

Example of Savings Realized by Switching from a 3GL to a 4GL
for 100 Percent of a 32,000 LOC Project 362

Summary of Best-Practice Candidates 396
Summary of Best-Practice Evaluations 400
Examples of Kinds of Measurement Data 470
Example of Time-Accounting Activities 472
Vendor-Evaluation Questionnaire 497
Contract Considerations 498

Differences in Office Environments Between Best and Worst
Performers in a Programming Competition 512

Approximate Function-Points to Lines-of-Code
Conversions 517

Approximate Language Levels 519

Example of a Staged-Delivery Schedule for a
Word Processor 552

Project Stakeholders and Their Objectives 560
Steps in Theory-W Project Management 562

X

Xiv

Preface

Software developers are caught on the horns of a dilemma. One horn of the
dilemma is that developers are working too hard to have time to learn about
effective practices that can solve most development-time problems; the other
horn is that they won't get the time until they do learn more about rapid
development.

Other problems in our industry can wait. It's hard to justify taking time to
learn more about quality when you're under intense schedule pressure to
“just ship it.” It's hard to learn more about usability when you've worked 20
days in a row and haven’t had time to see a movie, go shopping, work out,
read the papet; mow your lawn, or play with your kids. Until we as an in-
dustry learn to control our schedules and free up time for developers and
managers to learn more about their professions, we will never have enough
time to put the rest of our house in order.

The development-time problem is pervasive. Several surveys have found that
about two-thirds of all projects substantially overrun their estimates (Lederer
and Prasad 1992, Gibbs 1994, Standish Group 1994). The average large
project misses its planned delivery date by 25 to 50 percent, and the size of
the average schedule slip increases with the size of the project (Jones 1994).
Year after year, development-speed issues have appeared at the tops of lists
of the most critical issues facing the software-development community
(Symons 1991).

Although the slow-development problem is pervasive, some organizations
are developing rapidly. Researchers have found 10-to-1 differences in pro-
ductivity between companies within the same industries, and some research-
ers have found even greater variations (Jones 1994).

The purpose of this book is to provide the groups that are currently on the
“1” side of that 10-to-1 ratio with the information they need to move toward
the “10” side of the ratio. This book will help you bring your projects un-
der control. It will help you deliver more functionality to your users in less
time. You don'’t have to read the whole book to learn something useful; no
matter what state your project is in, you will find practices that will enable
you to improve its condition.

Who Should Read This Book?

Slow development affects everyone involved with software development,
including developers, managers, clients, and end-users—even their families
and friends. Each of these groups has a stake in solving the slow-develop-
ment problem, and there is something in this book for each of them.

This book is intended to help developers and managers know what’s pos-
sible, to help managers and clients know what'’s realistic, and to serve as an
avenue of communication between developers, managers, and clients so that
they can tailor the best possible approach to meet their schedule, cost, qual-
ity, and other goals.

Technical Leads

This book is written primarily with technical leads or team leads in mind. If
that’s your role, you usually bear primary responsibility for increasing the
speed of software development, and this book explains how to do that.
It also describes the development-speed limits so that you’ll have a firm
foundation for distinguishing between realistic improvement programs and
wishful-thinking fantasies.

Some of the practices this book describes are wholly technical. As a techni-
cal lead, you should have no problem implementing those. Other practices
are more management oriented, and you might wonder why they are in-
cluded here. In writing the book, I have made the simplifying assumption
that you are Technical Super Lead—faster than a speeding hacker; more
powerful than a loco-manager; able to leap both technical problems and
management problems in a single bound. That is somewhat unrealistic, I
know, but it saves both of us from the distraction of my constantly saying,
“If you're a manager, do this, and if you're a developer, do that.” Moreover,
assuming that technical leads are responsible for both technical and manage-
ment practices is not as far-fetched as it might sound. Technical leads are
often called upon to make recommendations to upper management about
technically oriented management issues, and this book will help prepare you
to do that.

Individual Programmers

Many software projects are run by individual programmers or self-managed
teams, and that puts individual technical participants into de facto technical-
lead roles. If you’re in that role, this book will help you improve your
development speed for the same reasons that it will help bona fide tech-
nical leads.

Preface

Managers

Managers sometimes think that achieving rapid software development is
primarily a technical job. If you're a manager, however, you can usually do
as much to improve development speed as your developers can. This book
describes many management-level rapid-development practices. Of course,
you can also read the technically oriented practices to understand what your
developers can do at their level.

Key Benefits of This Book

I conceived of this book as a Common Sense for software developers. Like
Thomas Paine’s original Common Sense, which laid out in pragmatic terms
why America should secede from Mother England, this book lays out in
pragmatic terms why many of our most common views about rapid devel-
opment are fundamentally broken. These are the times that try developers’
souls, and, for that reason, this book advocates its own small revolution in
software-development practices.

My view of software development is that software projects can be optimized
for any of several goals—lowest defect rate, fastest execution speed, great-
est user acceptance, best maintainability, lowest cost, or shortest develop-
ment schedule. Part of an engineering approach to software is to balance
trade-offs: Can you optimize for development time by cutting quality? By
cutting usability? By requiring developers to work overtime? When crunch
time comes, how much schedule reduction can you ultimately achieve? This
book helps answer such key trade-off questions as well as other questions.

Improved development speed. You can use the strategy and best practices
described in this book to achieve the maximum possible development speed
in your specific circumstances. Over time, most people can realize dramatic
improvements in development speed by applying the strategies and practices
described in this book. Some best practices won't work on some kinds of
projects, but for virtually any kind of project, you'll find other best practices
that will. Depending on your circumstances, “maximum development speed”
might not be as fast as you'd like, but you’ll never be completely out of luck
just because you can’t use a rapid-development language, are maintaining
legacy code, or work in a noisy, unproductive environment.

Rapid-development slant on traditional topics. Some of the practices
described in this book aren't typically thought of as rapid-development prac-
tices. Practices such as risk management, software-development fundamen-
tals, and lifecycle planning are more commonly thought of as “good
software-development practices” than as rapid-development methodologies.

These practices, however, have profound development-speed implications
that in many cases dwarf those of the so-called rapid-development methods.
This book puts the development-speed benefits of these practices into con-
text with other practices.

Practical focus. To some people, “practical” means “code,” and to those
people I have to admit that this book might not seem very practical. I've
avoided code-focused practices for two reasons. First, I've already written 800
pages about effective coding practices in Code Complete (Microsoft Press,
1993). I don’t have much more to say about them. Second, it turns out that
many of the critical insights about rapid development are not code-focused;
they’re strategic and philosophical. Sometimes, there is nothing more prac-
tical than a good theory.

Quick-reading organization. I've done all I can to present this book’s
rapid-development information in the most practical way possible. The first
400 pages of the book (Parts I and II) describe a strategy and philosophy of
rapid development. About 50 pages of case studies are integrated into that
discussion so that you can see how the strategy and philosophy play out
in practice. If you don’t like case studies, they've been formatted so that
you can easily skip them. The rest of the book consists of a set of rapid-
development best practices. The practices are described in quick-reference
format so that you can skim to find the practices that will work best on your
projects. The book describes how to use each practice, how much sched-
ule reduction to expect, and what risks to watch out for.

The book also makes extensive use of marginal icons and text to help you
quickly find additional information related to the topic you're reading about,
avoid classic mistakes, zero in on best practices, and find quantitative sup-
port for many of the claims made in this book.

A new way to think about the topic of rapid development. In no other
area of software development has there been as much disinformation as in
the area of rapid development. Nearly useless development practices have
been relentlessly hyped as “rapid-development practices,” which has caused
many developers to become cynical about claims made for any development
practices whatsoever. Other practices are genuinely useful, but they have
been hyped so far beyond their real capabilities that they too have contrib-
uted to developers’ cynicism.

Each tool vendor and each methodology vendor want to convince you that
their new silver bullet will be the answer to your development needs. In no
other software area do you have to work as hard to separate the wheat from
the chaff. This book provides guidelines for analyzing rapid-development
information and finding the few grains of truth.

Preface

XViil

This book provides ready-made mental models that will allow you to assess
what the silver-bullet vendors tell you and will also allow you to incorpo-
rate new ideas of your own. When someone comes into your office and says,
“I just heard about a great new tool from the GigaCorp Silver Bullet Com-
pany that will cut our development time by 80 percent!” you will know how
to react. It doesn’t matter that I haven’t said anything specifically about the
GigaCorp Silver Bullet Company or their new tool. By the time you finish
this book, you’ll know what questions to ask, how seriously to take
GigaCorp’s claims, and how to incorporate their new tool into your devel-
opment environment, if you decide to do that.

Unlike other books on rapid development, 'm not asking you to put all of
your eggs into a single, one-size-fits-all basket. I recognize that different
projects have different needs, and that one magic method is usually not
enough to _solve even one project’s schedule problems. 1 have tried to be
skeptical without being cynical—to be critical of practices’ effectiveness but
to stop short of assumingthat they don't work. I revisit those old, overhyped
practices and salvage some that are still genuinely useful—even if they aren’t
as useful as they were originally promised to be.

Why is this book about rapid development so big? Developers in the
IS, shrink-wrap, military, and software-engineering fields have all discovered
valuable rapid-development practices, but the people from these different
fields rarely talk to one another. This book collects the most valuable prac-
tices from each field, bringing together rapid-development information from
a wide variety of sources for the first time.

Does anyone who needs to know about rapid development really have time
to read 650 pages about it? Possibly not, but a book half as long would have
had to be oversimplified to the point of uselessness. To compensate, I've
organized the book so that it can be read quickly and selectively—you can
read short snippets while you're traveling or waiting. Chapters 1 and 2 con-
tain the material that you must read to understand how to develop products
more quickly. After you read those chapters, you can read whatever inter-
ests you most.

Why This Book Was Written

Clients’ and managers’ first response to the problem of slow development
is usually to increase the amount of schedule pressure and overtime they
heap on developers. Excessive schedule pressure occurs in about 75 percent
of all large projects and in close to 100 percent of all very large projects (Jones
1994). Nearly 60 percent of developers report that the level of stress they feel
is increasing (Glass 1994c). The average developer in the U.S. works from
48 to 50 hours per week (Krantz 1995). Many work considerably more.

In this environment, it isn’t surprising that general job satisfaction of software
developers has dropped significantly in the last 15 years (Zawacki 1993), and
at a time when the industry desperately needs to be recruiting additional
programmers to ease the schedule pressure, developers are spreading the
word to their younger sisters, brothers, and children that our field is no fun
anymore.

Clearly our field can be fun. Many of us got into it originally because we
couldn’t believe that people would actually pay us to write software. But
something not-so-funny happened on the way to the forum, and that some-
thing is intimately bound up with the topic of rapid development.

It’s time to start shoring up the dike that separates software developers from
the sea of scheduling madness. This book is my attempt to stick a few fin-
gers into that dike, holding the madness at bay long enough to get the job
started.

Acknowledgments

Heartfelt thanks go first to Jack Litewka, the project editor, for making the
creation of this book a thoroughly constructive and enjoyable experience.
Thanks also go to Peggy Herman and Kim Eggleston for the book’s design,
to Michael Victor for the diagrams, and to Mark Monlux for the terrific illus-
trations. Sally Brunsman, David Clark, Susanne Freet, Dean Holmes, Wendy
Maier, and Heidi Saastamoinen also helped this project go smoothly. Liter-
ally dozens of other people contributed to this book in one way or another;
I didn’t have personal contact with any of them, but I appreciate their con-
tributions, too. (Chief among these, I am told, are layout artist Jeannie
McGivern and production manager Jean Trenary of ArtSource and Microsoft
Press’s proof/copy-edit platoon supervised by Brenda Morris: Richard Carey,
Roger LeBlanc, Patrick Forgette, Ron Drummond, Patricia Masserman, Paula
Thurman, Jocelyn Elliott, Deborah Long, and Devon Musgrave.)

Microsoft Corporation’s technical library provided invaluable aid in digging
up the hundreds of books and articles that laid the foundation for this book.
Keith Barland spearheaded that effort, making my research efforts much less
arduous and time-consuming than they otherwise might have been. Other
people at the library who helped included Janelle Jones, Christine Shannon,
Linda Shaw, Amy Victor, Kyle Wagner, Amy Westfall, and Eilidh Zuvich.

I expound on the virtue of reviews in several places in this book, and this
book has benefited greatly from extensive peer reviews. Al Corwin, Pat
Forman, Tony Garland, Hank Meuret, and Matt Peloquin stuck with the
project from beginning to end. Thanks to them for seeing that the book you

XIX

Preface

XX

hold in your hands doesn’t look very much like the book I originally set out
to write! I also received valuable comments from Wayne Beardsley, Duane
Bedard, Ray Bernard, Bob Glass, Sharon Graham, Greg Hitchcock, Dave
Moore, Tony Pisculli, Steve Rinn, and Bob Stacy—constructive critics, all.
David Sommer (age 11) came up with the idea for the last panel of Figure
14-3. Thanks, David. And, finally, I'd like to thank my wife, Tammy, for her
moral support and good humor. I have to start working on my third book
immediately so that she will stop elbowing me in the ribs and calling me a
Two-Time Author!

Bellevue, Washington
June 1996

EFFICIENT
DEVELOPME

