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PREFACE

Over the years we have heard a continuing murmur of criticism: SALAS/HILLE
does not have enough contact with science and engineering, not enough physical
applications. We have finally addressed the problem.

In this edition you will find simple physical applications scattered throughout the
text and here and there, listed as optional, some applications that are not so simple.
Perhaps some of these may pique the interest of the more serious student.

Notwithstanding the increased presence of applications, the book remains a text on
mathematics, not science or engineering. The subject is calculus and the emphasis
is on three basic ideas: limit, derivative, integral. All else is secondary; all else can be
omitted.

S. L. SALAS
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THE CHANGES

CHAPTERS 1-12: ONE VARIABLE

» Greater variety of exercises on limits, including calculator exercises. ® More attention to
numerical approximations. Calculator exercises and, thanks to Professor Colin Graham of
Northwestern University, some computer programs written in BASIC. (These programs
serve to illustrate certain procedures explained in the text and may prove helpful to some
students. All the computer programs are optional. Access to a computer is not necessary for
an understanding of the text.) e Early consideration of infinite limits and limits as x —
+ o, e Fine-tuning of sections on maxima-minima and simpler prescriptions for graph-
ing. ¢ More emphasis on motion with constant acceleration. Conservation of energy during
free-fall. e Introduction to angular velocity and uniform circular motion. e Early explana-
tion of the role of symmetry in integration (odd functions, even functions). ¢ Weighted
averages; the mass of a rod, center of mass. ® A new section on the centroid of a region
culminates in Pappus’s theorem on volumes. ¢ New material on gravitational attraction.
(optional) e Strong emphasis on exponential growth and decline. ¢ The section on simple
harmonic motion has been revised to give the student more insight into oscillatory phenom-
ena. ¢ The chapter on differential equations has been discontinued. Those parts most
relevant to elementary calculus have been rewritten and distributed in the appropriate chap-
ters. * Detailed examination of the conic sections in polar coordinates. (optional; necessary
only for a later section on planetary motion, which too is optional) e The centroid of a curve
and Pappus’s theorem on surface area. (The centroid of a solid of revolution is introduced in
the exercises.) © A brief explanation of the gravitational force exerted by a spherical shell.
(optional) ¢ The inverted cycloid as the tautochrone and the brachystochrone. (optional)

CHAPTERS 13-18: SEVERAL VARIABLES

e Although vectors are still introduced as ordered triples of real numbers, we have placed
increased emphasis on working with vectors and vector functions in a component-free man-
ner. e Earlier introduction to the cross product. The cross product is now defined geometri-
cally, and its components are derived from that definition. ¢ The chapter on vectors contains
a brief introduction to matrices and determinants (2 by 2 and 3 by 3 only). ¢ Anelementary
discussion of curvilinear motion from a vector viewpoint (followed by some rudimentary
vector mechanics) culminates in an optional section on Kepler’s three laws of planetary
motion. ¢ Two intermediate-value theorems that prove useful in later chapters. e Stu-
dents are invited to derive Snell’s law of refraction from Fermat’s principle of least
time. e Early exploitation of symmetry in multiple integration. ® Moments of inertia are
introduced by examining the rotation of a rigid body. Frequent use of the parallel axis
theorem. e All the material on changing variables in multiple integration has been totally
rewritten. A more unified treatment ends with Jacobians and the general theorem. ¢ A
revised introduction to line integrals precedes an optional section on the work —energy formula
and the conservation of mechanical energy. * More attention is given to line integrals with
respect to arc length (mass of a wire, center of mass, moments of inertia). ¢ Green’s theorem
for Jordan regions is followed by Green’s theorem for regions bounded by two or more Jordan
curves. * Surfaces are introduced in parametrized form. Care is taken to help the student
understand various ways of parametrizing the more common surfaces. ¢ Paramount in our
discussion of surfaces is the fundamental vector product. e Surface area and surface integrals
are defined initially for parametrized surfaces. [Surfaces of the form z = f(x, y) then appearasa
special case.] e Surface integrals are used first to calculate the mass, center of mass, and
moments of inertia of a material surface. Later we focus on two-sided surfaces and the notion
of flux. e The basic differential operators are presented in terms of the operator V. The
divergence and curl of a vector field v are introduced as V - vand V X v. The Laplacean is
written V2. ¢ The divergence theorem first stated for a solid bounded by a single surface is
extended to solids bounded by two or more surfaces. (The idea is then applied to find the flux
of the electric field that surrounds a point charge.) e Stokes’s theorem is made more intelligi-
ble by working first with polyhedral surfaces.
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INTRODUCTION

1.1 WHAT IS CALCULUS?

To a Roman in the days of the empire a ““calculus’ was a pebble used in counting and
in gambling. Centuries later “calculare’ came to mean ““to compute,” “‘to reckon,”
“to figure out.” To the mathematician, physical scientist, and social scientist of
today calculus is elementary mathematics (algebra, geometry, trigonometry) enhanced by
the limit process.

Calculus takes ideas from elementary mathematics and extends them to a more
general situation. Here are some examples. On the left-hand side you will find an
idea from elementary mathematics; on the right, this same idea as extended by
calculus.

Elementary Mathematics Calculus

_—

slope of a line slope of a curve
y=mx+b y=f(x)




