Ulf Grenander and Michael Miller

Pattern Theory

From Representation to Inference

/| P
//
J

/

—
“~ 1
~{ |,
Ay o
/ P

q

OXFORD



PATTERN THEORY: FROM
REPRESENTATION
TO INFERENCE

Ulf Grenander and Michael 1. Miller

UNIVERSITY PRESS



OXTORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford OX2 6DP
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town DaresSalaam HongKong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece

Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Oxford University Press, 2007

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2007

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer
British Library Cataloguing in Publication Data
Data available
Library of Congress Cataloging in Publication Data
Data available

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed in Great Britain
on acid-free paper by
CPI Bath

ISBN 0-19-850570-1 978-0-19-850570-9
ISBN 0-19-929706-1 978-0-19-929706-1

13579108642



PATTERN THEORY



1

CONTENTS

Introduction
1.1  Organization
The Bayes Paradigm, Estimation and Information Measures
2.1 Bayes Posterior Distribution
2.1.1  Minimum Risk Estimation
2.1.2  Information Measures
2.2 Mathematical Preliminaries
22.1  Probability Spaces, Random Variables, Distributions,
Densities, and Expectation
2.2.2  Transformations of Variables
2.2.3  The Multivariate Normal Distribution
2.2.4  Characteristic Function
2.3 Minimum Risk Hypothesis Testing on Discrete Spaces
2.3.1  Minimum Probability of Error via Maximum A Posteriori
Hypothesis Testing
2.3.2  Neyman-Pearson and the Optimality of the Likelihood Ratio Test
24  Minimum Mean-Squared Error Risk Estimation in Vector Spaces
24.1 Normed Linear and Hilbert Spaces
24.2  Least-Squares Estimation
2.4.3 Conditional Mean Estimation and Gaussian Processes
2.5 The Fisher Information of Estimators
2.6 Maximum-Likelihood and its consistency
2.6.1 Consistency via Uniform Convergence of Empirical Log-likelihood
2.6.2  Asymptotic Normality and /n Convergence Rate of the MLE
2.7 Complete-Incomplete Data Problems and the EM Algorithm
2.8 Hypothesis Testing and Model Complexity
2.8.1 Model-Order Estimation and the d/2 log Sample-Size Complexity
2.8.2  The Gaussian Case is Special
2.8.3 Model Complexity and the Gaussian Case
2.9  Building Probability Models via the Principle of Maximum Entropy

29.1  Principle of Maximum Entropy
29.2  Maximum Entropy Models
29.3  Conditional Distributions are Maximum Entropy

Probabilistic Directed Acyclic Graphs and Their Entropies

3.1
3.2
3.3
34

3.5

3.6
3.7

Directed Acyclic Graphs (DAGs)

Probabilities on Directed Acyclic Graphs (PDAGs)

Finite State Markov Chains

Multi-type Branching Processes

3.4.1  The Branching Matrix

3.42 The Moment-Generating Function

Extinction for Finite-State Markov Chains and Branching Processes
3.5.1  Extinction in Markov Chains

3.5.2  Extinction in Branching Processes

Entropies of Directed Acyclic Graphs

Combinatorics of Independent, Identically Distributed Strings via the
Aymptotic Equipartition Theorem

co g o Ul Ul [

10
10
11
12

13
14
16
17
20
22
24
26
27
28
30
38
38
41
42
43
44
45
47

49
49
51
54
56
59
60
62
62
63
64



vi

CONTENTS

3.8
3.9

3.10
3.11

3.12

3.13

Entropy and Combinatorics of Markov Chains

Entropies of Branching Processes

3.9.1 Tree Structure of Multi-Type Branching Processes

3.9.2  Entropies of Sub-Critical, Critical, and Super-Critical Processes

3.9.3 Typical Trees and the Equipartition Theorem

Formal Languages and Stochastic Grammars

DAGs for Natural Language Modelling

3.11.1 Markov Chains and m-Grams

3.11.2  Context-Free Models

3.11.3 Hierarchical Directed Acyclic Graph Model

EM Algorithms for Parameter Estimation in Hidden

Markov Models

3.12.1 MAP Decoding of the Hidden State Sequence

3.12.2 ML Estimation of HMM parameters via EM Forward /Backward
Algorithm

EM Algorithms for Parameter Estimation in Natural

Language Models

3.13.1 EM Algorithm for Context-Free Chomsky Normal Form

3.13.2 General Context-Free Grammars and the Trellis Algorithm
of Kupiec

Markov Random Fields on Undirected Graphs

4.1
42
43
44
4.5

4.6

4.7

4.8
49
4.10

Undirected Graphs

Markov Random Fields

Gibbs Random Fields

The Splitting Property of Gibbs Distributions

Bayesian Texture Segmentation: The log-Normalizer Problem
4.5.1  The Gibbs Partition Function Problem
Maximum-Entropy Texture Representation

4.6.1  Empirical Maximum Entropy Texture Coding
Stationary Gibbs Random Fields

4.71  The Dobrushin/Lanford /Ruelle Definition

472 Gibbs Distributions Exhibit Multiple Laws with the Same Interactions

(Phase Transitions): The Ising Model at Low Temperature
1D Random Fields are Markov Chains
Markov Chains Have a Unique Gibbs Distribution
Entropy of Stationary Gibbs Fields

Gaussian Random Fields on Undirected Graphs

5.1
52
5.3
54
5.5
5.6

&7

5.8

Gaussian Random Fields

Difference Operators and Adjoints

Gaussian Fields Induced via Difference Operators

Stationary Gaussian Processes on Z? and their Spectrum
Cyclo-Stationary Gaussian Processes and their Spectrum

The log-Determinant Covariance and the Asymptotic Normalizer
5.6.1  Asymptotics of the Gaussian processes and their Covariance
5.6.2 The Asymptotic Covariance and log-Normalizer

The Entropy Rates of the Stationary Process

57.1  Burg’s Maximum Entropy Auto-regressive Processes on 74
Generalized Auto-Regressive Image Modelling via Maximum-Likelihood
Estimation

5.8.1  Anisotropic Textures

66
68
69
70
71
74
81
81
82
84

87
88

89

92
93

94

95

95

96
101
104
110
110
112
113
116
116

117
119
120
121

123
123
124
126
133
134
137
138
142
142
143

144
147



CONTENTS vii
6 The Canonical Representations of General Pattern Theory 154
6.1 The Generators, Configurations, and Regularity of Patterns 154
6.2  The Generators of Formal Languages and Grammars 158
6.3  Graph Transformations 162
6.4 The Canonical Representation of Patterns: DAGs, MRFs, Gaussian Random Fields 166
6.41  Directed Acyclic Graphs 167
6.42  Markov Random Fields 169
6.4.3 Gaussian Random Fields: Generators induced via difference operators 170
7 Matrix Group Actions Transforming Patterns 174
7.1  Groups Transforming Configurations 174
7.1.1  Similarity Groups 174
7.1.2  Group Actions Defining Equivalence 175
7.1.3  Groups Actions on Generators and Deformable Templates 177
7.2 The Matrix Groups 177
7.21  Linear Matrix and Affine Groups of Transformation 177
7.22  Matrix groups acting on R4 179
7.3  Transformations Constructed from Products of Groups 181
7.4 Random Regularity on the Similarities 184
7.5 Curves as Submanifolds and the Frenet Frame 190
7.6 2D Surfaces in R? and the Shape Operator 195
7.6.1  The Shape Operator 196
7.7  Fitting Quadratic Charts and Curvatures on Surfaces 198
7.71  Gaussian and Mean Curvature 198
7.7.2  Second Order Quadratic Charts 200
7.7.3  Isosurface Algorithm 201
7.8 Ridge Curves and Crest Lines 205
7.8.1  Definition of Sulcus, Gyrus, and Geodesic Curves on
Triangulated Graphs 205
7.8.2  Dynamic Programming 207
7.9  Bijections and Smooth Mappings for Coordinatizing
Manifolds via Local Coordinates 210
8 Manifolds, Active Models, and Deformable Templates 214
8.1 Manifolds as Generators, Tangent Spaces, and Vector Fields 214
8.1.1 Manifolds 214
8.1.2  Tangent Spaces 215
8.1.3  Vector Fields on M 217
8.1.4  Curves and the Tangent Space 218
8.2 Smooth Mappings, the Jacobian, and Diffeomorphisms 219
8.2.1  Smooth Mappings and the Jacobian 219
8.2.2  The Jacobian and Local Diffeomorphic Properties 221
8.3  Matrix Groups are Diffeomorphisms which are a Smooth Manifold 222
8.3.1 Diffeomorphisms 222
8.3.2  Matrix Group Actions are Diffeomorphisms on the
Background Space 223
8.3.3  The Matrix Groups are Smooth Manifolds (Lie Groups) 224
8.4  Active Models and Deformable Templates as Immersions 226
8.4.1  Snakes and Active Contours 226
842  Deforming Closed Contours in the Plane 226
8.4.3  Normal Deformable Surfaces 227
8.5  Activating Shapes in Deformable Models 229
85.1  Likelihood of Shapes Partitioning Image 229
8.5.2 A General Calculus for Shape Activation 229



viii

CONTENTS

10

8.6
8.7

853 Active Closed Contours in R?

8.5.4  Active Unclosed Snakes and Roads

8.5.5  Normal Deformation of Circles and Spheres
8.5.6  Active Deformable Spheres

Level Set Active Contour Models

Gaussian Random Field Models for Active Shapes

Second Order and Gaussian Fields

9.1

9.2

93
9.4

9.5
9.6

97
9.8

9.9

9.10
911

9.12

Second Order Processes (SOP) and the Hilbert Space of Random Variables

9.1.1  Measurability, Separability, Continuity

9.1.2  Hilbert space of random variables

9.1.3  Covariance and Second Order Properties

9.14  Quadratic Mean Continuity and Integration

Orthogonal Process Representations on Bounded Domains

9.21 Compact Operators and Covariances

9.22  Orthogonal Representations for Random Processes and Fields

9.2.3  Stationary Periodic Processes and Fields on Bounded Domains

Gaussian Fields on the Continuum

Sobolev Spaces, Green’s Functions, and Reproducing

Kernel Hilbert Spaces

9.4.1 Reproducing Kernel Hilbert Spaces

9.4.2  Sobolev Normed Spaces

9.4.3 Relation to Green’s Functions

9.44 Gradient and Laplacian Induced Green'’s Kernels

Gaussian Processes Induced via Linear Differential Operators

Gaussian Fields in the Unit Cube

9.6.1 Maximum Likelihood Estimation of the Fields: Generalized ARMA
Modelling

9.6.2  Small Deformation Vector Fields Models in the Plane and Cube

Discrete Lattices and Reachability of Cyclo-Stationary Spectra

Stationary Processes on the Sphere

9.8.1 Laplacian Operator Induced Gaussian Fields on the Sphere

Gaussian Random Fields on an Arbitrary Smooth Surface

9.9.1 Laplace-Beltrami Operator with Neumann Boundary Conditions

9.9.2  Smoothing an Arbitrary Function on Manifolds by Orthonormal Bases

of the Laplace-Beltrami Operator
Sample Path Properties and Continuity
Gaussian Random Fields as Prior Distributions in Point
Process Image Reconstruction
9.11.1 The Need for Regularization in Image Reconstruction
9.11.2 Smoothness and Gaussian Priors
9.11.3 Good’s Roughness as a Gaussian Prior
9.114 Exponential Spline Smoothing via Good’s Roughness
Non-Compact Operators and Orthogonal Representations
9.12.1 Cramer Decomposition for Stationary Processes
9.12.2 Orthogonal Scale Representation

Metrics Spaces for the Matrix Groups

10.1

10.2
10.3

Riemannian Manifolds as Metric Spaces

10.1.1 Metric Spaces and Smooth Manifolds

10.1.2 Riemannian Manifold, Geodesic Metric, and Minimum Energy
Vector Spaces as Metric Spaces

Coordinate Frames on the Matrix Groups and

the Exponential Map

232
234
236
236
237
240

244
244
244
247
249
251
252
253
257
258
262

264
265
266
267
267
271
274

278
280
283
285
289
293
293

297
299

303
304
304
305
306
309
311
312

316
316
316
317
319



CONTENTS ix
10.3.1 Left and Right Group Action 320
10.3.2 The Coordinate Frames 321
10.3.3 Local Optimization via Directional Derivatives and the
Exponential Map 323
10.4 Metric Space Structure for the Linear Matrix Groups 324
104.1 Geodesics in the Matrix Groups 324
10.5 Conservation of Momentum and Geodesic Evolution of the
Matrix Groups via the Tangent at the Identity 326
10.6 Metrics in the Matrix Groups 327
10.7 Viewing the Matrix Groups in Extrinsic Euclidean Coordinates 329
10.7.1 The Frobenius Metric 329
10.7.2 Comparing intrinsic and extrinsic metrics in SO(2,3) 330
11 Metrics Spaces for the Infinite Dimensional Diffeomorphisms 332
11.1 Lagrangian and Eulerian Generation of Diffeomorphisms 332
11.1.1 On Conditions for Generating Flows of Diffeomorphisms 333
11.1.2 Modeling via Differential Operators and the Reproducing
Kernel Hilbert Space 335
11.2  The Metric on the Space of Diffeomorphisms 336
11.3 Momentum Conservation for Geodesics 338
11.4 Conservation of Momentum for Diffeomorphism Splines
Specified on Sparse Landmark Points 340
11.4.1 An ODE for Diffeomorphic Landmark Mapping 343
12 Metrics on Photometric and Geometric Deformable Templates 346
12.1 Metrics on Dense Deformable Templates: Geometric Groups
Acting on Images 346
12.1.1 Group Actions on the Images 346
12.1.2 Invariant Metric Distances 347
12.2  The Diffeomorphism Metric for the Image Orbit 349
12.3 Normal Momentum Motion for Geodesic Connection Via
Inexact Matching 350
12.4 Normal Momentum Motion for Temporal Sequences 354
12.5 Metric Distances Between Orbits Defined Through
Invariance of the Metric 356
12.6 Finite Dimensional Landmarked Shape Spaces 357
12.6.1 The Euclidean Metric 357
12.6.2 Kendall’s Similitude Invariant Distance 359
12.7 The Diffeomorphism Metric and Diffeomorphism Splines on Landmark Shapes 361
12.7.1 Small Deformation Splines 361
12.8 The Deformable Template: Orbits of Photometric and
Geometric Variation 365
12.8.1 Metric Spaces for Photometric Variability 365
12.8.2 The Metrics Induced via Photometric and Geometric Flow 366
12,9 The Euler Equations for Photometric and Geometric Variation 369
12.10 Metrics between Orbits of the Special Euclidean Group 373
12.11 The Matrix Groups (Euclidean and Affine Motions) 374
12.11.1 Computing the Affine Motions 376
13 Estimation Bounds for Automated Object Recognition 378
13.1 The Communications Model for Image Transmission 378
13.1.1 The Source Model: Objects Under Matrix Group Actions 379
13.1.2  The Sensing Models: Projective Transformations in Noise 379

13.1.3 The Likelihood and Posterior

379



CONTENTS

14

13.2

133

13.4
135
13.6

13.7

Conditional Mean Minimum Risk Estimation

13.2.1 Metrics (Risk) on the Matrix Groups

13.22 Conditional Mean Minimum Risk Estimators

13.2.3 Computation of the HSE for SE(2,3)

13.2.4 Discrete integration on SO(3)

MMSE Estimators for Projective Imagery Models

13.3.1 3D to 2D Projections in Gaussian Noise

13.3.2 3D to 2D Synthetic Aperture Radar Imaging

13.3.3 3D to 2D LADAR Imaging

13.3.4 3D to 2D Poisson Projection Model

13.3.5 3D to 1D Projections

13.3.6 3D(2D) to 3D(2D) Medical Imaging Registration

Parameter Estimation and Fisher Information

Bayesian Fusion of Information

Asymptotic Consistency of Inference and Symmetry Groups

13.6.1 Consistency

13.6.2 Symmetry Groups and Sensor Symmetry

Hypothesis Testing and Asymptotic Error-Exponents

13.7.1 Analytical Representations of the Error Probabilities and the
Bayesian Information Criterion

13.7.2  m-ary Multiple Hypotheses

Estimation on Metric Spaces with Photometric Variation

14.1

14.2

14.3

14.4

14.5
14.6

14.7

14.8

The Deformable Template: Orbits of Signature and

Geometric Variation

14.1.1 The Robust Deformable Templates

14.1.2 The Metric Space of the Robust Deformable Template

Empirical Covariance of Photometric Variability

via Principle Components

14.2.1 Signatures as a Gaussian Random Field Constructed from
Principle Components

14.2.2  Algorithm for Empirical Construction of Bases

Estimation of Parameters on the Conditionally Gaussian

Random Field Models

Estimation of Pose by Integrating Out EigenSignatures

14.4.1 Bayes Integration

Multiple Modality Signature Registration

Models for Clutter: The Transported Generator Model

14.6.1 Characteristic Functions and Cumulants

Robust Deformable Templates for Natural Clutter

14.7.1 The Euclidean Metric

14.7.2  Metric Space Norms for Clutter

14.7.3 Computational Scheme

14.7.4 Empirical Construction of the Metric from Rendered Images

Target detection/identification in EO imagery

15 Information Bounds for Automated Object Recognition

15.1

Mutual Information for Sensor Systems

15.1.1 Quantifying Multiple-Sensor Information Gain Via Mutual
Information

15.1.2  Quantifying Information Loss with Model Uncertainty

15.1.3 Asymptotic Approximation of Information Measures

381
381
382
384
385
385
385
389
392
393
395
397
398
402
405
405
406
407

408
412

414

414
414
415

416

417
418

422
424
427
429
431
432
438
439
439
442
R
445

447
447

447
449
452



CONTENTS Xi
15.2 Rate-Distortion Theory 456
15.2.1 The Rate-Distortion Problem 456
15.3 The Blahut Algorithm 457
15.4 The Remote Rate Distortion Problem 459
15.4.1 Blahut Algorithm extended 460
15.5 Output Symbol Distribution 465
16 Computational Anatomy: Shape, Growth and Atrophy Comparison via
Diffeomorphisms 468
16.1 Computational Anatomy 468
16.1.1 Diffeomorphic Study of Anatomical Submanifolds 469
16.2 The Anatomical Source Model of CA 470
16.2.1 Group Actions for the Anatomical Source Model 472
16.2.2  The Data Channel Model 473
16.3 Normal Momentum Motion for Large Deformation Metric
Mapping (LDDMM) for Growth and Atrophy 474
16.4 Christensen Non-Geodesic Mapping Algorithm 478
16.5 Extrinsic Mapping of Surface and Volume Submanifolds 480
16.5.1 Diffeomorphic Mapping of the Face 481
16.5.2 Diffeomorphic Mapping of Brain Submanifolds 481
16.5.3  Extrinsic Mapping of Subvolumes for Automated
Segmentation 481
16.5.4 Metric Mapping of Cortical Atlases 483
16.6 Heart Mapping and Diffusion Tensor Magnetic
Resonance Imaging 484
16.7 Vector Fields for Growth 488
16.7.1 Growth from Landmarked Shape Spaces 488
17 Computational Anatomy: Hypothesis Testing on Disease 494
17.1 Statistics Analysis for Shape Spaces 494
17.2  Gaussian Random Fields 495
17.2.1 Empirical Estimation of Random Variables 496
17.3 Shape Representation of the Anatomical Orbit Under Large Deformation
Diffeomorphisms 496
17.3.1 Principal Component Selection of the Basis from
Empirical Observations 497
17.4 The Momentum of Landmarked Shape Spaces 498
17.4.1 Geodesic evolution equations for landmarks 498
17.4.2  Small Deformation PCA Versus Large Deformation PCA 499
17.5 The Small Deformation Setting 502
17.6 Small Deformation Gaussian Fields on Surface Submanifolds 502
17.7 Disease Testing of Automorphic Pathology 503
17.7.1 Hypothesis Testing on Disease in the Small Noise Limit 503
17.7.2  Statistical Testing 505
17.8 Distribution Free Testing 510
17.9  Heteromorphic Tumors 511
18 Markov Processes and Random Sampling 514
18.1 Markov Jump Processes 514
18.1.1 Jump Processes 515
18.2 Random Sampling and Stochastic Inference 516
18.2.1 Stationary or Invariant Measures 517
18.2.2  Generator for Markov Jump Processes 519
18.2.3 Jump Process Simulation 520
18.2.4 Metropolis—Hastings Algorithm 521



Xii

CONTENTS

19

18.3 Diffusion Processes for Simulation

18.3.1

18.3.2

Generators of 1D Diffusions
Diffusions and SDEs for Sampling

18.4 Jump-Diffusion Inference on Countable Unions of Spaces

18.4.1

The Basic Problem

Jump Diffusion Inference in Complex Scenes
19.1 Recognition of Ground Vehicles

19.3:1
1912

CAD Models and the Parameter Space
The FLIR Sensor Model

19.2  Jump Diffusion for Sampling the Target Recognition Posterior

1921
19.2.2
19.2.3
19.2.4

The Posterior distribution

The Jump Diffusion Algorithms

Jumps via Gibbs’ Sampling

Jumps via Metropolis—Hastings Acceptance/Rejection

19.3 Experimental Results for FLIR and LADAR

19.3.1
19.3.2
19.3.3
19.34
19.3.5
19.3.6

Detection and Removal of Objects

Identification

Pose and Identification

Identification and recognition via High Resolution Radar (HRR)
The Dynamics of Pose Estimation via the Jump-Diffusion Process
LADAR Recognition

19.4 Powerful Prior Dynamics for Airplane Tracking

19.4.1
19.4.2
1943

The Euler-Equations Inducing the Prior on Airplane Dynamics
Detection of Airframes
Pruning via the Prior distribution

19.5 Deformable Organelles: Mitochondria and Membranes

19.5.1
19.5.2

19.5.3 The Electron Micrograph Data Model: Conditional Gaussian Random

The Parameter Space for Contour Models
Stationary Gaussian Contour Model

Fields

19.6 Jump-Diffusion for Mitochondria

19.6.1
19.6.2
19.6.3
19.6.4

References

Index

The jump parameters

Computing gradients for the drifts

Jump Diffusion for Mitochondria Detection and Deformation
Pseudolikelihood for Deformation

523
525
527
528
529

532
533
533
534
536
536
536
539
541
543
543
543
544
546
546
548
549
550
552
552
553
553
554

555
556
557
557
558
560

563
581



INTRODUCTION

This book is to be an accessible book on patterns, their representation, and inference. There
are a small number of ideas and techniques that, when mastered, make the subject more
accessible. This book has arisen from ten years of a research program which the authors
have embarked upon, building on the more abstract developments of metric pattern theory
developed by one of the authors during the 1970s and 1980s. The material has been taught
over multiple semesters as part of a second year graduate-level course in pattern theory,
essentially an introduction for students interested in the representation of patterns which are
observed in the natural world. The course has attracted students studying biomedical engi-
neering, computer science, electrical engineering, and applied mathematics interested in speech
recognition and computational linguistics, as well as areas of image analysis, and computer
vision.

Now the concept of patterns pervades the history of intellectual endeavor; it is one of the
eternal followers in human thought. It appears again and again in science, taking on different
forms in the various disciplines, and made rigorous through mathematical formalization. But the
concept also lives in a less stringent form in the humanities, in novels and plays, even in everyday
language. We use it all the time without attributing a formal meaning to it and yet with little risk
of misunderstanding. So, what do we really mean by a pattern? Can we define it in strictly logical
terms? And if we can, what use can we make of such a definition?

These questions were answered by General Pattern Theory, a discipline initiated by Ulf
Grenander in the late 1960s [1-5]. It has been an ambitious effort with the only original sketchy
program having few if any practical applications, growing in mathematical maturity with a mul-
titude of applications having appeared in biology /medicine and in computer vision, in language
theory and object recognition, to mention but a few. Pattern theory attempts to provide an algebraic
framework for describing patterns as structures regulated by rules, essentially a finite number of
both local and global combinatory operations. Pattern theory takes a compositional view of the
world, building more and more complex structures starting from simple ones. The basic rules for
combining and building complex patterns from simpler ones are encoded via graphs and rules on
transformation of these graphs.

In contrast to other dominating scientific themes, in Pattern Theory we start from the
belief that real world patterns are complex: Galielaen simplification that has been so successful in
physics and other natural sciences will not suffice when it comes to explaining other regulari-
ties, for example in the life sciences. If one accepts this belief it follows that complexity must
be allowed in the ensuing representations of knowledge. For this, probabilities naturally enter,
superimposed on the graphs so as to express the variability of the real world by describing its
fluctuations as randomness. Take as a goal the development of algorithms which assist in the
ambitious task of image understanding or recognition. Imagine an expert studying a natural scene,
trying to understand it in terms of the awesome body of knowledge that is informally avail-
able to humans about the context of the scene: identify components, relate them to each other,
make statements about the fine structure as well as the overall appearance. If it is truly the
goal to create algorithmic tools which assist experts in carrying out the time-consuming labor
of pattern analysis, while leaving the final decision to their judgment, to arrive at more than ad
hoc algorithms the subject matter knowledge must be expressed precisely and as compactly as
possible.

This is the central focus of the book: ‘How can such empirical knowledge be represented
in mathematical form, including both structure and the all important variability?” This task of
presenting an organized and coherent view of the field of Pattern theory seems bewildering at
best. But what are today’s challenges in signal, data and pattern analysis? With the advent of

1



1 INTRODUCTION

geometric increases in computational and storage resources, there has been a dramatic increase
in the solution of highly complex pattern representation and recognition problems. Historically
books on pattern recognition present a diverse set of problems with diverse methods for building
recognition algorithms, each approach handcrafted to the particular task. The complexity and
diversity of patterns in the world presents one of the most significant challenges to the pedagogical
approach to the teaching of Pattern theory. Real world patterns are often the results of evolutionary
change, and most times cannot be selected by the practitioner to have particular properties. The
representations require models using mathematics which span multiple fields in algebra, geometry,
statistics and statistical communications.

Contrasting this to the now classical field of statistical communications, it might appear that
the task seems orders of magnitude bigger than modelling signal ensembles in the communica-
tion environment. Thinking historically of the now classical field of statistical communications,
the discipline can be traced back far, to Helmholtz and earlier, but here we are thinking of its
history in the twentieth century. For the latter a small number of parameters may be needed,
means, covariances, for Gaussian noise, or the spectral density of a signal source, and so on.
The development of communication engineering from the 1920s on consisted in part of formal-
izing the observed, more or less noisy, signals. Statistical signal processing is of course one of
the great success stories of statistics/engineering. It is natural to ask why. We believe that it was
because the pioneers in the field managed to construct representations of signal ensembles, mod-
els that were realistic and at the same time tractable both analytically and computationally (by
analog devices at the time). The classical signalling models: choose s (f), s1 (f) to be orthogonal
elements in L2, with the noise model additive stationary noise with covariance representation via
a complete orthonormal basis. Such a beautiful story, utilizing ideas from Fourier analysis, sta-
tionary stochastic processes, Toeplitz forms, and Bayesian inference! Eventually this resulted in
more or less automated procedures for the detection and understanding of noisy signals: matched
filters, optimal detectors, and the like. Today these models are familiar, they look simple and
natural, but in a historical perspective the phenomena must have appeared highly complex and
bewildering.

We believe the same to be true for pattern theory. The central challenge is the formalization of
a small set of ideas for constructing the representations of the patterns themselves which accommodate
variability and structure simultaneously. This is the point of view from which this book is written.
Even though the field of pattern theory has grown considerably over the past 30 years, we have
striven to emphasize its coherence. There are essentially two overarching principles. The first is the
representation of regularity via graphs which essentially encode the rules of combination which
allow for the generation of complex structures from simpler ones. The second is the application of
transformations to generate from the exemplars entire orbits. To represent typicality probabilistic
structures are superimposed on the graphs and the rules of transformation. Naturally then the
conditional probabilities encode the regularity of the patterns, and become the central tool for
studying pattern formation.

We have been drawn to the field of pattern theory from backgrounds in communication
theory, probability theory and statistics. The overall framework fits comfortably within the source-
channel view of Shannon. The underlying deep regular structures are descriptions of the source,
which are hidden via the sensing channel. We believe that the principle challenge is the represen-
tation of the source of patterns, and for that reason the majority of the book is focused precisely
on this topic. A multiplicity of channels or sensor models will be used throughout the book, those
appropriate for the pattern class being studied. They are however studied superficially, drawn
from the engineering literature and taken as given, but certainly studied more deeply elsewhere.
The channel sensor models of course shape the overall performance of the inference algorithms;
but the major focus of our work is on the development of stochastic models for the structural
understanding of the variabilities of the patterns at the source. This also explains the major devia-
tion of this pattern theory from that which has come to be known as pattern recognition. Only in
the final chapters will pattern recognition algorithms be studied, attempting to answer the ques-
tion of how well the algorithm can estimate (recognize) the source when seen through the noisy
sensor channel.
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1.1 Organization

Throughout this book we use methods from estimation, stochastic processes and information
theory. Chapter 2 includes the basic stalwarts of statistics and estimation theory which should be
familiar to the reader, including minimum-risk estimation, Fisher Information, hypothesis testing
and maximum-likelihood, consistency, model order estinmation, and entropies.

Chapters 3-6 bring into central prominence the role of representation of patterns via con-
ditioning structure. Chapter 3 examines discrete patterns represented via probabilistic directed
acyclic graphs (DAGs) emphasizing the pivoting properties and conditional factorizations of
DAGs which are familiar for Markov chains and random branching processes. This provides
ample opportunity to construct and study the syntactic theory of Chomsky Languages via the
classical formulation of graphs and grammatical transformation. Chapter 4 relaxes away from the
pivoting property of directed graphs to the conditioning structure of neighborhoods in Markov
random fields. Chapter 5 brings the added structure of of the Gaussian law for representing real-
valued patterns via Gaussian fields. In this context entropy and maximum entropy distributions
are examined in these three chapters as a means of representing conditioning information for rep-
resenting patterns of regularity for speech, language, and image analysis. Chapter 6 presents the
abstract representation of patterns via generators and probabilistic structures on the generators.
The generator representation is explored as it provides a unified way of dealing with DAGs and
random fields.

Chapters 7 and 8 begin examining in their own right the second central component of pattern
theory, groups of geometric transformation applied to the representation of geometric objects. The
patterns and shapes are represented as submanifolds of R”, including points, curves, surfaces and
subvolumes. They are enriched via the actions of the linear matrix groups, studying the patterns
as orbits defined via the group actions. In this context active models and deformable templates
are studied. The basic fundamentals of groups and matrix groups are explored assuming that the
typical engineering graduate student will not be familiar with their structure.

Chapter 9 makes the first significant foray into probabilistic structures in the continuum,
studying random processes and random fields indexed over subsets of R". Classical topics
are examined in some detail including second order processes, covariance representation, and
Karhunen-Loeve transforms. This is the first chapter where more significant understanding is
required for understanding signal and patterns as functions in a Hilbert space.

Chapters 10 and 11 continue the major thrust into transformations and patterns indexed over
the continuum. In this context, the finite dimensional matrix groups are studied as diffeomorphic
actions on R", as well their infinite dimensional analogues are established. It is in these chapters
in which the substantial bridge between Pattern theory, mechanics, and differential geometry is
established. The links come through the study of flows of diffeomorphisms. Chapter 10 focuses
on the study of the finite dimensional matrix groups, and Chapter 11 on the infinite dimensional
diffeomorphisms acting on manifolds of R" as a Riemannian metric space. The metric is induced
by the geodesic length between elements in the space defined through the Riemannian length
of the flow connecting one point to another. Herein the classical equations of motion for the
geodesics in the finite dimensional case are expanded to include the Euler formulation of the
infinite dimensional case.

Chapter 12 expands this view to examine the orbit of imagery as a deformable template
under diffeomorphic action; the orbit is endowed with the metric structure through the length
minimizing geodesics connecting images. In this chapter the photometric orbit is studied as
well, adding notions from transport to define a metric on the product space of geometric and
photometric variation.

Chapters 13-15 extend from the pure representations of shapes to the Bayes estimation of
shapes and their parametric representation. Classical minimum-mean-squared error and maxi-
mum a-posteriori estimators of shapes are explored in these chapters as viewed through various
remote sensing models. Chapter 13 focuses on estimating the pose of rigid objects; chapter 14
focuses on accommodating photometric variability superimposed on the geometric variability of
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rigid pose. Chapter 15 focuses on information bounds for quantifying estimation accuracy of the
matrix group, comparing mean-squared error bounds with capacity and rate-distortion bounds
for codebooks.

Chapters 16 and 17 turn from the estimation of finite dimensional matrix groups to the study
of the estimation of infinite dimensional shape in the newly emergent field of Computational
Anatomy. Chapter 15 focuses on estimating landmark and image based shape metrics in volumes,
with Chapter 16 focusing on submanifolds and on the inference of disease and hypothesis testing
in Computational Anatomy.

The last two Chapters 18 and 19 conclude on inference, exploring random sampling
approaches for estimation of model order and parametric representing of shapes. Chapter 18
reviews jump and diffusion processes and their use in random sampling of discrete and continuum
spaces. Chapter 19 examines a series of problems in object recognition.

We have made an attempt to keep the theory at a consistent level. The mathematical level is
a reasonably high one, first-year graduate level, with a background of at least one good semester
course in probability and a solid background in mathematics. We have, however, been able to
avoid the use of measure theory.

Appendices outlining proofs, theorems and solutions to exercises together with a com-
phrehive list of figures, tables and plates are freely available on an accompanying website
www.oup.com/uk/academic/companion/mathematics/patterntheory

In this book plates 1-16 appear between pages 180-181, plates 17-34 appear between pages
372-373, and plates 35-53 appear between 564-565.



THE BAYES PARADIGM, ESTIMATION AND
INFORMATION MEASURES

ABSTRACT The basic paradigm is the Bayesian setup, given is the source of parameters X € X
which are seen through a noisy channel giving observations Y € Y. The posterior distribution
determines the bounds on estimation of X given Y, the risk associated with estimating it, as
well as a characterization of the information in the observation in Y about X.

2.1 Bayes Posterior Distribution

The basic set up throughout is we are given a model of the source of possible objects X € X
These are observed through a noisy channel giving observations Y € ). The source X € X' is
modelled with distribution and density Px(dx) = p(x)dx, [y p(x)dx = 1. Generally the source
can only be observed with loss of information due to observational noise or limited accuracy in
the sensor. The mapping from the input source X € A to the observed output Y € ) expresses
the physics of the sensing channels; the data Y € ) will in general contain multiple components

corresponding to several sensors Y = (Y] LYo, .. ) The observation process is characterized via

a statistical transition law, transferring X — Y Py|x(-|-) : X x ¥ — R, summarizing completely
the transition law mapping the input model parameters X to the output Y, the likelihood of Y
given X.

This Bayesian paradigm, separating the source from the channel is what has become the mod-
ern view of communications developed out of Shannon'’s theory of communications [6]. Figure 2.1,
clearly delineates the separation of the source of information and the channel through which the
messages are observed. To infer the transmitted message at the output of the channel, the obser-
vation Y must be processed optimally. The inference engine is a decoder, working to recover
properties of the original message from the source.

Given such a communications source/channel decomposition, we shall be interested in both
specifying optimal procedures for inferring properties of pattern generation systems given the
observable measurements, and quantifying the information content and information gain of the
observation system. Pattern deduction becomes an enterprise consisting of constructing the source
and channel models, and essentially has several parts: (i) selection and fitting of parameters
parametrizing the models representing the patterns, and (ii) construction of the family of prob-
ability models representing the knowledge about the pattern classes. For this we shall examine
classical minimum-risk estimators, such as minimum-mean-squared-error (MMSE) estimators,
maximume-aposteriori and likelihood (MAP, MLE). For constructing the models we shall examine
various forms and principles of entropy and mutual information.

At the most fundamental level, the posterior distribution represents the information con-
tained in the observables about the underlying imagery. All provably optimal structured methods
of inference and information gathering fundamentally involve the posterior density or distribution
of the random variables X € X’ given the observed deformed image Y € V.

Source > Noisy Channel » Inference Engine l———

XeX Yey X(Y) X

Figure 2.1 Shannon’s source channel model for communications systems



