Temporal Logic
and Temporal

- Duan Zhenhua

School of Computer Science and Technology
Xidian University B

flf

-r'j‘; ’:3\:‘ o ﬁ%\ ik

WWWw.sciencep.com

Temporal Logic and Temporal
Logic Programming

Duan Zhenhua

School of Computer Science and Technology
Xidian University

Science Press

Responsible Editors: Li Na and Li Wei

Temporal Logic and Temporal Logic Programming

Copyright(©2005 by Science Press, Beijing

Published by Science Press
16 Donghuangchenggen North Street
Beijing 100717,China

Printed in Beijing

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Science Press) except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

ISBN 7-03-016651-5/TP. 3158

Preface

I was involved in a research project concerning interval temporal logic and temporal
logic programming funded by SERC in UK and did my Ph.D in the Department of Com-
puting Science at the University of Newcastle upon Tyne from 1991 to 1993. I submitted
my Ph.D chesis in the end of 1995 and obtained my Ph.D in July 1996.

This book is basically based on my Ph.D thesis [l though some corrections and changes
have been made in order to keep up with the development of this research area.

Temporal logic programming is a paradigm for specification and verification of con-
current programs in which a program can be written, and the properties of the program
can be described and verified in a same notation. However, there are many aspects of
programming in temporal logics that are not well-understood. One such an aspect is con-
current programming, another is framing and the third is synchronous communication for
parallel processes.

This book extends the original Interval Temporal Logic (ITL) to include infinite mod-
els, past operators, and a new projection operator for dealing with concurrent computation,
synchronous communication, and framing in the context of temporal logic programming;

The book generalizes the original ITL to include past operators such as previous and
past chop, and extends the model to include infinite intervals. A considerable collection
of logic laws regarding both propositional and first order logics is formalized and proved
within model theory.

After that, a subset of the extended ITL is formalized as a programming language,
called extended Tempura. These extensions, as in their logic basis, include infinite models,
the previous operator, projection and framing constructs. A normal form for programs
within the extended Tempura is demonstrated.

Next, a new projection operator is introduced. In the new construct, the sub-processes
are autonomous; each process has the right to specify its own interval over which it is
executed.

The book presents a framing technique for temporal logic programming, which includes
the definitions of new assignments, the assignment flag and the framing operator, the
formalization of algebraic properties of the framing operator, the minimal model semantics
of framed programs, as well as an executable framed interpreter.

The synchronous communication operator await is based directly on the proposed
framing technique. It enables us to deal with concurrent computation. Based on EITL
and awast operator, a framed concurrent temporal logic programming language, FTLL, is
formally defined within EITL.

i Preface

Finally, the book describes a framed interpreter for the extended Tempura which has
been developed in SICSTUS prolog. In the new interpreter, the implementation of new
assignments, the frame operator, the await operator, and the new projection operator are
all included.

During the year when I worked in the Department of Computing Science at the Uni-
versity of Newcastle upon Tyne, many colleagues and friends supported and helped me
for my research. By this opportunity, I would like to thank all of them. Especially,

I am grateful to my supervisor, Maciej Koutny, for his excellent guidance throughout
many years and invaluable help with my thesis. Maciej’s insistence on clear writing and
notation has set a standard I always aim for. His detailed readings and numerous comments
on the early different versions of the draft thesis have challenged me to form many ideas
and to improve the contents of the final version.

I am greatly indebted to Ben Moszkowski for leading me to this research field, and
for all of his support and advice as I was working with him for development of the framed
interpreter.

I would also like to thank Roger Hale and Shinji Kono for some useful discussions.
In particular, Kono’s assistance in using Sicstus prolog during the period when I was
developing the framed interpreter for Tempura is appreciated.

I am thankful to Shirley Craig for her patience and efficiency in searching out many
relevant references for my research.

Thanks go to the two examiners, Michael Fisher and John Fitzgerald, who discovered
many typos in an earlier version of my thesis and suggested a number of changes to improve
the thesis. '

Many thanks also go to Tom Anderson, Brian Randell, Santosh Shrivastava, and John
Lloyd for their support and help.

I'wish to acknowledge the help of my students at Xidian University for their detailed
comments and helpful criticisms. In particular, Tian Cong helped with the technical
preparation of the manuscript. She spent long hours patiently preparing the format of
different versions of this book.

The research behind this book is now supported by NSFC under Grant 60373103
and Grant 60433010, and SRFDP under Grant 2003701015. I am particularly thankful
to National Natural Science Foundation of China, Science and Technology Development
Center of the Education Department of China.

Contents

Chapter 1 Introduction 1
Ll LeHTPORal Tu0FIC « ¢ s s 5ivs wiw mm pw pim FE PR AE P e E SR 6 E S 8§ § 1
1.2 Temporal Logic Programming 3
1.3 Description of Book 5

Chapter 2 Propositional Temporal Logic. 9
2] STICAK o s 56 5.0 56 6 5 0 5 25 55 8 F F S F 6 8B 8 B E BB 5 S b 6 e e aTa w6 e 9
2.2 Semantics.o e e e e 10
2.3 Satisfaction and Validity. 12
24 ADBDTevIBHIONS . o o ¢ o v s 5 s sis w65 59 8w s 5555 555 8 bnmt n gos mle o 12
2.5 Precedence Rules. 16
2.6 Equivalence Relations. e 16
2.8 LopicLAWE w: s v s o sbe m s 54 bl srwals 3 dbind B9 o5 20 We s, 753 4.0 o B ohaid 17

Chapter 3 First Order Temporal Logic 35
Bl Synbax. cviveeinne ne i dm e s s d s e S b F 35
3.2 Semantics.t e 36
3.3 Satisfaction and Validity., 39
34 LogicLaws. 40

3.4.1 Basic Theorems., 40
3.4.2 Quantifications and Temporal Operators. 41
34.3 Valuesof Terms. 47
3.4.4 Replacement of Variables 50
3.4.5 Quantifications 55

Chapter 4 Programming Language 59

41 Synbax. 60
4.1.1 Programsuuiiit 60
4.1.2 Derived Constructst 63
4.1.3 EXPressions.t 65 .
414 Data Structures.o i it e e 66

4.1.5 Omitting Parentheses Precedence Rules 67

iv Contents

4.2 Semantics Of PTOGrams oo v vv i vt i e i e e 68
4.3 Models Corresponding to Programs 69
4.4 Normal Form of Programs. v oo v v i it cm oo e 70
Chapter 5 Projection in Temporal Logic Programming 85
5.1 Syntaxand Semanticsc.ciiieiiiiiiii e 86
5.2 Properties of Projection Operator oo, 89
5.3 Normal Form of Projection Construct 98
i, EXBINPIOE 00 wm w5 ol s vorpme sy m boloe sp op b e o b of 5 wEd s 104
Chapter 6 Framingttt 107
6.1 Why Framingo 107
6.2 Problems and Principles 110
6.3 SOIUbIONS . . . v v ittt e e e e e e e e e e e e e e e e 112
6.3.1 New Assignments and Framing Operators 113

6.3.2° - Minital Models: s ; 1 s s st tsacbamsmomsmssasn qosessas 115

6:4 " Basic Framing Techniques: « : o « v i w4 56 206 06 56 600 60 0s 6w 60750 30 118
Chapter 7 Minimal Model Semantics of Framed Programs. 125
7.1 Minimal Model Semanticsc.iii i 125
7.2 Algebraic Properties of Framing Operators 133
T3 BREmpPle. : v v swanbpomsminsmsdsdsuens inabs ToRY e b 138
T4 DISCUSSION: « . v vovnm wm s msmemensossss LGB AwELGLEL L 141
Chapter 8 Communication and Synchronization. 143
8.1 Await Construct« aisnd wmrogaaedl 2alaa Jadd. L. wiays 143
8.2 Framed Programming Language.ottt 145
8.3 Programming in FTLL. 148
8.3.1 Framed AIraysttt e e 148

8.3.2 Mutual Exclusion Problem 151

8.3.3 Producer and Consumerttt 153

Bid, (CONCIUBION 5 7 .5 v o 5 5 iy g sl S 5o o oo TH T 6L B b Rt 2 2 2 s S 5y 1 154
Chapter 9 A Framed Interpreter for Extended Tempura 155
9.1 Implementation Strategyttt 156
9.2 Data SUINCHITES: s 5 sw i v.0 55 5 % 5 56 2 5 5 8 5 6 6 & 508 W Adud 50 A6 HF § e 157
9:2:1, Variables s sc s aswsnsai s e min s soous s s 56 65 swme e es s 157

9 2.F CODBEANLS: +.5 » 55 5 s v 5 5 8 % § 55 @5 06 G5 35 518 56 wie 8§07 55 66 55 b 157

LT N . e 157

9.3 Program Structure. 158
9.3.1 OnePassReduction0.i.iiiieiien.n.. 158

9.3.2 Reductionat One Stateuiiineon.. 158

9.3.3 Reductionof One Programiuun.n 159

9.3.4+ + Execution of Templird %, /20900 4 20 brgd 3 A N e oo 159

Contents

9.4 Implementing New Operatorscooieuerunannnn. 159
9.4.1 Implementation of Projection Operator 160

9.4.2 Implementing Parallel Operator. 161

9.4.3 Implementing await(c)ottt 162

9.4.4 Implementation of Framing Operators. 162

0.5 ConclUSIONSo oo vwewiminssesnssosossssiosssssssssses 165
Chapter 10 Conclusion i, 167
10.1 Extended Propositional ITL 167
10.2 Extended First Order ITL.ttt 168
103 PEOJOCEIGH) o v s % ¢ w5 o s @ s oy s woig frov 2 a8 m s 6 0 5 e wiie m mic m o s 169
10.4 Extended TEMPUTO « « s o « o ¢ s s 008 605 8 08 56 56 06 0n sw sce wim o ws s 169
105 BYBIIINE <. 5005 05 5 5 615 5 6 5 5 315 805 6.5 636 5 6 6 @ 5 8 6 0 § 8% s Rl ol 5w e 170
10.6 Synchronous Communication., 170
10.7 Interpreter o oottt e e 170
10.8 Comparison with other works 171
10.9 Future Work oo i e 173
10.9.1 A Proof System for EITL., 173
10.9.2 Axiomatic Semantics of the Extended Tempura. 174
10.9.3 Operational Semantics of the Extended Tempura. 174
APPONAIX: - v 5w w5 v s @i a5 5 i v ne hs 06 E S ST s e e e 175
Bibliography e 187

Chapter 1

Introduction

This book extends the Interval Temporal Logic (ITL)? to include infinite models,
past operators, a new projection operator for dealing with concurrent computation, syn-
chronous communication, and framing in the context of temporal logic programming.

1.1 Temporal Logic

In the past three decades temporal logic has emerged as a formalism for specification
and verification of reactive systems. Temporal logic is a branch of modal logic which has
been studied for a long timel® * % & 7 & Modal logic deals with two propositional operators
O (always) and < (sometimes) besides the usual logic connectives such as A, V, — and <
etc. interpreted as “necessarily” and “possibly”. This is based on the idea that the truth
of an assertion is a relative notion depending on possible worlds. A formal semantics
of modal logic is given by Kripkel®. To model a system, kripke structures and labeled
transition systems (LTS) are normally employed [® I,

There are a number of temporal logics in literature® 1 112,13, 141 They can be di-
vided into two categories, linear-time and branching-time logics. Linear-time logics are
concerned with properties of paths while branching-time logics describe properties depend-
ing on the branching of computational structures.

Within the family of branching-time logics, there are three formalisms which received
particular attention: Hennessy-Milner Logic (HML), Modal p—Calculus and Computa-
tional Tree Logic (CTL). HML is a simple modal logic introduced by Hennessy and
Milnerl’s ¢, Tt is defined over a given set, Act, of actions, ranged over by a. Formu-
las are constructed according to the following grammar:

¢ ==true | false | pr A2 | 1V ¢2 | [a]¢ | (a) ¢

The most interesting operators of HML are the branch time modalities [a] and (a). They
relate a state to its a—successors. [a]¢ holds for a state if all a—successors satisfy formula
¢ while (a) ¢ holds if there exists an a—successor satisfying formula ¢.

The modal p—calculus'™ is a branching temporal logic which extends Hennessy-Milner
Logic by fixpoint operators. Let Act be a set of actions and Var a set of variables. Modal

2 Chapter 1 Introduction

p—calculus formulas are constructed according to the following grammar:
¢ u=true | false | p1 A2 | o1V 2 | [a]o |(a) o | X | pX.¢ | vX.¢

Here, X ranges over Var and a over Act. The two fixpoint operators pX and vX, bind
free occurrences of variable X. Modal p—calculus formulas are interpreted over labeled
transition systems. Given an LTS T = (S, Act,—), we interpret a closed formula, ¢, as
that subset of S whose states make ¢ true. The formulas, [a]¢ and (a) ¢, can be interpreted
as in HML. The least fixpoint formula, uX.¢, is interpreted by the smallest subset = of
S that recurs when ¢ is interpreted with the substitution of z for X while the greatest
fixpoint formula, »X.¢, is interpreted by the largest such set.

The syntax of Computation Tree Logic’? looks as follows:

pu=p|-¢|d1V 2| AU(¢1,¢2) | EU(¢1,2) | AF(9) | EF(9) | AG(9) | EG(9)

CTL has the six modalities AU, EU, AF, EF, AG and EG. Each takes the form QL, where
Q is one of the paths quantifiers A (all) and E (existence) while L is one of the linear-
time modalities U (until), F' (sometimes) and G (always). The path quantifier provides a
universal (A) or existential (E) quantification over the paths emanating from a state, and
on these paths the corresponding linear-time property must hold.

There are many types of linear-time logics in literature [112, Lamport defines the
temporal logic of actions (TLA) which includes temporal operators O and < without the
next operator 9. Instead, he employs z’ to denote the new value of z. TLA is a linear
logic for specifying and reasoning about concurrent systems in which systems and their
properties can be represented in the same logic. A typical linear-time logic is given by
Manna and Pnueli !, The following is its syntax:

pu=p| ¢ |o1V 2| Od|Ulér,¢2) | F(¢) | G(¢)

With this logic, the temporal operators are O (next), U (until), F' (sometimes) and G
(always). The formulas are interpreted over Kripke structures.

Among linear-time temporal logics, there exist a number of logics based on the chop
(;) operator [1® 1], We call these logics choppy logics. The chop operator is different from
the conventional temporal operators O and (). A formula, p;g, holds over a path (or
interval) if and only if the path can be split into two parts such that p holds on the first
part and g holds on the second part. Chop was first introduced as a temporal construct by
Harel, Kozen and Parikh(*®l. It was considered in more detail by Chandra, Halpern, Meyer
and Parikh*!. Halpern, Manna and Moszkowski used chop to facilitate reasoning about
time-dependent digital hardware[®!. Subsequently, Moszkowski formalized a temporal
logic based on the chop, chop star, next, and projection operatorsi?l. This linear temporal
logic is now called the Interval Temporal Logic (ITL). It is a choppy logic based on finite
intervals of time. Within this logic, in the first order case, the chop star operator can be
defined by means of the chop operator. Several researchers have developed ITL extensions
for hybrid systems. Zhou, Hoare and Ravn[??! formalized a real-time logic called Duration
Calculus (DC) for hybrid systems. Duan, Holcombe and Bell generalized ITL to a Hybrid
Projection Temporal Logic (HPTL) for hybrid systems [2% 24,

1.2 Temporal Logic Programming 3

Several researchers have investigated choppy logic for infinite time. Rosner and Pnueli
formalized a propositional choppy logic which includes chop (8], next and until operators
in 1986. The formulas are interpreted over finite and infinite time intervals. Paech [2e]
defined a choppy logic with chop, chop star (restricted), next and unless operators in
1988. The formulas are interpreted over infinite time intervals. Dutertre 7 gave first
order chop logic with chop, next operators, but the formulas are interpreted over only
finite time. Wang Hanpin and Xu Qiwen generalized this logic to infinite time intervals
in 1999 P,

Within the ITL developments, Duan, Koutny and Holt introduced a new projection
construct, (p1,...,Pm) prj g, and generalized ITL to infinite time intervals in 1994291,
The new projection operator, prj, can subsume the chop and original projection opera-
tor proji®. The subsequent work!? 32 33 generalized ITL to Projection Temporal Logic
(PTL) with infinite time intervals. Moszkowski extended the axioms systems for the finite
intervals PITL and ITL[to projection and infinite time intervals in 199500)

Within the choppy logic community, several researchers have looked at decision pro-
cedures and axioms systems for the variations of choppy logics. Rosner and Pnuelil*®]
presented an axiom system for a propositional choppy logic with chop, next and until, and
based the completeness proof on tableaux-based decision procedure. Paech?! formalized
a complete Gentzen-style proof system over finite intervals with the temporal operators
chop, chop star and unless. Dutertrel?”) presented two complete proof systems for the first
order choppy logic over finite time with the temporal operators chop and next. Wang
Hanpin and Xu Qiwen generalized this to infinite timel?8].

Halpern and Moszkowskil?® 34 proved the decidability of quantifier-free propositional
ITL (QPITL) over finite time. Kono presented a tableaux-based decision procedure for
QPITL with projectionl®!. However, no formal proof was given that all models were
considered. It appears that Bowman and Thompson[*! presented a first tableaux-based
decision procedure for quantifier-free propositional ITL over finite intervals with projec-
tion. Subsequently, they presented a completeness proof for an axiomatization of this
logicl*7].

Moszkowskil®! presented axioms systems over finite intervals for the propositional ITL
and first order ITL. The propositional part is claimed to be complete but only an outline
of a proof was given. Later work extended this for projection with infinite timell, In
2000, Moszkowski formalized a complete axiomatization of ITL with infinite timel**,

1.2 Temporal Logic Programming

Temporal logic has been proposed for the purpose of verifying properties of programs.
However, the verification of programs has suffered from the convention that different lan-
guages (and thus different semantic domains) have been used for writing programs, writing
about their properties, and writing about whether and how a program satisfies a given
property [°). One way to simplify this is to use the same language in each case, as far as
possible.

It has therefore been suggested that a subset of a temporal logic be used as the
foundational basis for a programming language [42, This has led to the definition of
a number of programming languages based on temporal logics [2: % 43, 44, 45, 48]

4 Chapter 1 Introduction

One of the earliest temporal logic programming languages, XYZ/E [43], is based on
linear time temporal logic proposed by Manna and Pnueli (8], Furthermore, XYZ system
consists of a temporal logic programming language XYZ/E as its basis, and a group of
CASE tools to support various kinds of methodologies [4e],

Another temporal logic programming language, Tempura (2] which we are particularly
interested in, is based on a subset of interval temporal logic whose formulas can be inter-
preted as a traditional imperative program. In logic terms, executing a Tempura formula
(program) amounts to building a model for the formula.

Gabbay developed the language USF (8] which follows an imperative future approach.
The METATEM language [** % is a development of USF consisting of a larger range of
operators, a better defined execution mechanism 52 and a more practical normal form [53],
A METATEM program for controlling a process is presented as a collection of temporal
rules. The rules apply universally in time and determine how the process progresses.

TOKIO [is a logic programming language based on the extension of Prolog with
ITL formulas. It provides a useful system in which a range of applications can be im-
plemented and verified. TOKIO supports an extended subset of ITL incorporating the
non-deterministic operators “0” and “V”.

The temporal logic programming languages [45 %! are based on the logic programming
paradigm and view an execution of a program as a refutation proof. Many other temporal
logic programming languages can be found in literaturel® % 47 54, 55, 56, 57

An interpreter written in C for Tempura was developed by Hale 58], He also investi-
gated how to use Tempura in programming. Many samples illustrating how to model the
structure and behaviour of hardware and software systems in a unified way can be found
in literaturel? %I,

However, there are many aspects of programming in temporal logics that are not
well understood (at least in Tempura). One such an aspect is concurrent programming,
another is the problem of framing, and the third is synchronous communication for parallel
processes.

In a temporal logic programming language such as Tempura, the conjunction and
parallel composition (see Chapter 4) are basic operators for concurrent programming.
However, the conjunction seems appropriate for dealing with fine-grained parallel opera-
tions that proceed in lock step; while the parallel composition, on the other hand, permits
the combined processes to specify their own intervals. Thus it is better suited to the
coarse-grained concurrency of a typical multiprocessor, where each process proceeds at
its own speed. However, processes combined through the parallel composition operator
share all the states and may interfere with one another. It is therefore necessary for us to
investigate other possible ways to handle concurrent programming.

Framing techniques have been employed by conventional imperative languages for
many years. However, framing in conventional languages has often been taken for granted.
Nevertheless, we have to consider this option carefully in temporal logic programming.
Framing is concerned with how the value of a variable from one state can be carried to
the next. Temporal logic offers no solution in this respect; no value from a previous state
is assumed to be carried. Therefore, if we want the value of a variable to be inherited,
we have to repeatedly assign the value to the variable from state to state. This is not

1.3 Description of Book 5

only tedious but also may decrease the efficiency of the program. Moreover, synchronous
communication can not be handled without framing in temporal logic programming (see
below).

Another problem that must be dealt with in temporal logic programming is that
of communication between concurrent processes. Some models of concurrency involve
shared (programming) variables, some involve synchronous message passing, and some
involve asynchronous channels e.g. CCS [# 6 CSP [¢4, In temporal logic program-
ming languages such as XYZ/E [%] and Tempura 2, communication between parallel
components is based on shared variables.

To synchronize communication between parallel processes in a concurrent program
(e.g. solving the mutual exclusion problem) with the shared variables model, a syn-
chronization construct, await(c) or some equivalent is required, as in many concurrent
programming languages ('], The meaning of await(c) is simple: it changes no variables,
but waits until the condition ¢ becomes true, at which point it terminates.

Modelling an await(c) in a temporal logic requires a kind of indefinite stability, since
it cannot be known at the point of use how long the wait will be; but it must also allow
variables to change, so that an external process can modify the boolean parameter and
it can eventually become true. Solving this problem also requires some kind of framing
operation. ‘

1.3 Description of Book

To deal with framing, synchronization and communication, and concurrent program-
ming, an extend interval temporal logic (EITL) is formalised. The main extensions are
made in two aspects: one is that the past operators such as previous and past chop (the
counterpart of chop in the future) operators can be used; the other is that infinite models
are permitted. (Of course, projection is an extension to ITL but it is treated as another
topic). The reason for introducing past operators is that a framed program may involve
immediate assignments which require the previous operator for reducing the program in
an operational manner. The infinite intetvals are needed because we are concerned with
reactive systems. The extensions are not trivial. In some sense, we generalise ITL from an
interval-based notation to a point-based notation since we refer to no explicit subintervals
but points over a fixed interval. The extended logic systems are divided into two parts:
propositional and first order logics.

Chapter 2 introduces the extended propositional interval temporal logic (EPITL).
First, the syntax and semantics of the underlying logic are presented, then the fundmental
logic laws concerning the temporal operators, both future and past, are formalized and
proved. These logic laws also provide a basis for the first order EITL.

Chapter 3 presents the first order extended interval temporal logic (EITL). The logic
laws regarding variables, functions, predicates, equality, and quantifications, in addition
to its syntax and semantics are presented. These logic laws, as a foundation, allow us to
prove some useful properties of programs, to capture the temporal semantics of a framed
program.

Chapter 4 formalizes a programming language which is an executable subset of the
extended logic system and an extension of Tempura. Within this language, a variable

6. Chapter 1 Introduction

can refer to its previous value, as well as its next value as in the original Tempura. The
computation trace of a program can also be infinite. These extensions enable us to handle
a concurrent computation for a reactive system.

J=
Opy;j, where p; and p.; are state formulas consisting of equalities; whereas py; is an
internal program. This conclusion is proved by induction on the structure of programs. It
facilitates capturing temporal semantics and further reducing programs.

l t
A program p with the extended language has the normal form, \ peiNemptyV V1 Pej
=1

Chapter 5 introduces a new projection operator, (p1,...,pm) prj g, which can be
thought of as a combination of the parallel (||) and the original projection (p proj q)
operators in Tempura. The motivation for introducing the new projection construct is
that we intend to give a more flexible parallel operator in temporal logic programming.

Intuitively, (p1, ..., Pm) Prj ¢ means that g is executed in parallel with p;;...; pm over an
interval obtained by taking the endpoints (rendezvous points) of the intervals over which
P1,..-, Pm are executed. The new projection construct permits the processes, p, ..., Pm, ¢,
to be autonomous, each process having the right to specify the interval over which it
is executed. In particular, the sequence of processes pi,...,pm and ¢ may terminate at
different time points. Although the communication between processes is still based on
shared variables, the communication and synchronization take place only at the rendezvous
points (global states), otherwise they are executed independently.

In the chapter, a considerable set of logic laws regarding the projection construct are
formalized and proved. The normal form of the projection construct is also proved. These
logic laws and the normal form allow us to reduce the projection statement in temporal
logic programming. Finally, an example is given to illustrate how to reduce a projection
statement.

Chapter 6 discusses the framing issue. Framing is difficult to handle within a logic
system. It is well known that the first order logic is monotonic. That is, adding a formula
to a theory has the effect of strictly increasing the set of formulas that can be inferred.
However, the framing issue is intrinsically non-monotonic. Indeed, adding a new positive
fact, i.e. an explicit assignment, to a set of positive facts with the framing operator has a
‘side effect’: the negation of the fact cannot be inferred from the previous set.

To work out an executable framed temporal logic programming language such as
framed Tempura with mixed framed and non-framed variables is not straightforward.
First, we find assignment operators within Tempura are inadequate to deal with framing
and thus new assignment operators must be defined. Second, the non-monotonicity makes
a framed program radically shift in its semantics with respect to the one without framing.
Framed programs are no longer well interpreted within the normal logic model we use.
Therefore, some new models are required.

In the chapter therefore a new assignment operator (<=) and an assignment flag (af)
are defined within the extended logic framework. Armed with the assignment flag, a
framing operator frame(z) is formalized. These new constructs are interpreted within a
minimal model semantics.

This allows us to specify framing status of variables throughout an interval in a flexible
manner. However, introducing the framing operator destroys the monotonicity, and leads

1.3 Description of Book 7

to a default logic (6% 54 8], Therefore, negation by default has to be used to manipulate
the framing operator.

To illustrate framing techniques, a number of examples are given within different
program constructs including the sequential, conjunction, parallel, projection and the
mixed cases. These examples show us the framing operator can be used in a flexible
manner to facilitate framing in different program constructs.

Chapter 7 introduces minimal model semantics to interpret framed programs. As
mentioned earlier, when a framing technique is introduced to temporal logic programming,
the semantics of a program may be changed. So, one issue we have to face is how to
interpret a framed program. That is, how to capture the intended meaning of a program.
In logic programming languages such as Prolog, negation by failure has been used in
programs, and a program is interpreted by the minimal model or fixed point semantics as
in literaturel®. This leads us to introduce a similar idea in temporal logic programming.
To interpret framed programs, the minimal model is developed in detail. As a result, the
existence of a minimal model of a framed program is proved under the assumption that
the program has at least one finite model or has finitely many models. Two important
logic laws concerning substitution are formalized and proved. A normal form for framed
programs is also presented.

The framing operator enjoys some nice algebraic properties such as equivalency, dis-
tributivity, absorptivity, and idempotency etc. These algebraic laws are very useful for
the reduction of a framed program. Many reduction rules of the interpreter developed by
me recently employ these laws. In this chapter, some of algebraic properties of framing
operators are characterized and proved.

Finally, an example is given to show how to use the logic laws and the minimal model
to reduce a framed program.

Chapter 8 discusses synchronous communication in temporal logic programming. With
the framing operator, the synchronous communication construct, await(c), can easily be
defined. Therefore, real concurrent programs can be managed within our system. In the
book, we present a general framed concurrent temporal logic programming language FTLL
which is similar to the language presented in literaturel'!l except that the concurrent com-
putation model is true concurrency [! for ours but interleaving for theirs. The impor-
tant difference is that our language is formally defined within the logic framework whereas
their language is semi-formal. Of course, the language FTLL is a non-deterministic pro-
gramming language. To deal with non-determinacy, we adopt Dijkstra’s guarded language.
As an illustration, two examples of programs within FTLL are given: one is the program
solving the well known producer-consumer problem, and the other is the program filling
an even order magic square problem.

Chapter 9 briefly introduces the new interpreter for the extended Tempura. To im-
plement the previous operator, projection, await and framing constructs, a new framed
interpreter has been developed in SICSTUS Prolog. However, we do not intend to present
the interpreter in detail; only a brief explanation about implementation is provided, and
some relative reduction algorithms are described.

Chapter 10 draws some conclusions.

In short, the main contribution of this book is in the following six respects:

8 Chapter 1 Introduction

1) The extended interval temporal logics, both propositional and first order, are new. The
book generalizes the original ITL [?! by adding past operators such as previous (©), and

past chop (;), and by extending the model to an infinite case. The extension changes
the logic, in some sense, from an interval-based temporal logic to a point-based one. A
considerable collection of logic laws regarding both propositional and first order logics is
formalized and proved in detail within model theory.

2) A subset of the extended ITL is formalized as a programming language, called extended
Tempura. These extensions, as in EITL, include infinite models and the previous opera-
tor. The normal form for the programs within the extended Tempura is firstly proved in
a formal way based on the logic laws we give.

3) A new projection operator, (p1,...,Pm)pPrJj ¢, is generalised from Moszkowski’s projec-
tion p proj g, but the semantics is different. The construct p proj ¢ requires that process
p be repeatedly executed over an interval and ¢ be executed at endpoints of each subin-
terval on which p is executed, but the termination is controlled by ¢g. The new construct,
(p1,.-,Pm) Prj g, is treated as a combination of parallel and projection computations.
The processes pi, ..., Pm, ¢, are autonomous, each process has the right to specify its own
interval over which it is executed. Although the process ¢ is executed in a parallel way
with the process py; ...; Pm, the communication between them is only at rendezvous states,
and the processes may terminate at different time points.

4) The framing technique presented in the book is entirely our own work. It is a new
methodology for temporal logic programming, which includes the definitions of new assign-
ments (<=,:=7,0=",7), the assignment flag (af), and the framing operator (frame),
the formalization of algebraic properties of the framing operator, the minimal model se-
mantics of framed programs, as well as an executable framed interpreter.

5) The synchronous communication operator await is a natural consequence of our framing
technique. It enables us to deal with the real concurrent computation such as one solving
producer-consumer. Based on EITL and await operator, a framed concurrent temporal
logic programming language, FTLL, is formally defined within EITL. The programs in
FTLL, of course, have to be interpreted with the minimal model.

6) The framed interpreter for the extended Tempura has been developed in SICSTUS pro-
log. In the new interpreter, the implementation of new assignments, the frame operator,
the await operator, and the new projection operator are all included. It is not complete
but workable. The development of the framed interpreter is also our own work.

Chapter 2

Propositional Temporal Logic

Summary: An extended propositional interval temporal logic (EPITL) is for-
malized. The syntax and semantics of EPITL as well as some derived formulas
are presented. Furthermore, a collection of logic laws is investigated in the
underlying logic.

Temporal logic, like the classical first order logic, is formalized in two parts: propo-
sitional and first order. We first present an extended propositional ITL (EPITL). This
later provides a basis for the first order extended ITL (EITL). The extension is made in
two respects: a model can be an infinite interval and a temporal operator can be a past
operator in the underlying logic.

This chapter is organized as follows: Section 2.1 presents the syntax of EPITL. Section
2.2 presents the semantics of EPITL. To this end, first, states and intervals are defined.
Then interpretations of terms and formulas are given in detail. Section 2.3 defines satis-
faction and validity of formulas in EPITL. In Section 2.4, some useful derived formulas are
given. Section 2.5 gives the precedence rules of operators. Section 2.6 defines strong and
weak equivalence relations as well as strong and weak implication relations. In Section
2.7, a number of logic laws are formalized and proved.

2.1 Syntax

The extended propositional ITL basically consists of propositional logic with modal
constructs to reason about intervals of time. The modal constructs include both future and
past operators. Let Z denote all integers, N all positive integers, and Ny all non-negative
integers.

1. Alphabet
1) A denumerable set Prop of atomic propositions.

2) The symbols -,A,O,;,0, 3, +

2. Inductive Definition of Formulas

