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Preface

The modern civil engineer needs to deal with a variety of materials that are often in-
tegrated in the same structure, such as steel and concrete. or are used separately for
construction projects, such as pavements from asphalt and portland cement con-
cretes. Many of these construction materials have been with us for centuries, like tim-
ber. while others. like portland cement concrete and steel, are relatively new and have
been used mainly during the last century. The civil engineering field is also making
headway in the use of even more modern materials, such as polymers and composites.
The modern principles of materials science have been applied extensively over the
past three decades to construction materials, and the benetfits of this approach can be
seen clearly on site: The traditional construction materials used at present are far su-
perior to those of the past (achieving, for example, concrete strength levels greater by
an order of magnitude), and there is increased use of synthetic and composite materi-
als that are specially formulated for civil engineering applications.

As a result of these changes and the expected dynamic developments in this
field. there is a clear trend in the industry to move from the empirical-technological
approach of the past to one which incorporates both the technology and materials
science concepts. In view of this modern trend. there is a need for a revision in the
materials education of the civil engineer. Traditionally. materials science and con-
struction materials have been taught almost as separate entities. Materials science
teaching was based mainly on texts developed for courses for engineering areas in
which metals are of the greatest interest. with some reference to other materials,
such as polymers and ceramics. Construction materials were taught thereatter inde-
pendently. giving greater attention to their technology and much less to their sci-
ence. As a result. civil engineers were limited in their overall view of construction
materials and were lacking some of the concepts of materials science. such as surface
properties. which are of prime importance in construction materials but receive
hardly any attention in the traditional materials science texts.

This book offers a new approach. in which the science and technology are in-
tegrated. It is divided into four parts: the first two provide the general concepts of
materials. referring to their fundamental structure and mechanical properties (Part
[ is titled "The Fundamentals of Materials.” and Part II is “Behavior of Materials
under Stress™). The other two parts of the book deal with specific construction ma-
terials (the titles are as follows: Part III, “Particulate Composites: Portland Cement
and Asphalt Concretes™; Part IV, “Steel, Wood. Polymers, and Composites™). The
parts of this book dealing with general materials science concepts are presented in
an approach which is directed toward civil engineering needs and emphasizes sur-
face properties and amorphous structures. The parts of this book dealing with the ac-
tual construction materials are written with the view of combining the materials
science and engineering approaches with an emphasis on materials characteristics of
particular interest for civil engineering applications.

This book is designed primarily for use at the undergraduate level, but it can
also serve as a guide for the professional engineer. Thus it includes reference to

xiii



Xiv

standards and specifications. It is intended to serve as a basis for a two-semester
course. However, it is designed to be flexible enough to be adjusted for shorter
courses. Such a course could be based on all of Part I, three of the chapters in Part IT
(Chapter 5, “Response of Materials to Stress,” Chapter 6, “Failure and Fracture.”
and Chapter 7, “Rheology of Fluids and Solids™), and selected chapters dealing with
specific construction materials, in view of the intended scope of the shortened
course.
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Atomic Bonding

1.1

INTRODUCTION

1.2

IONIC BONDS

Introductory courses in chemistry have discussed atomic structure and the way in
which chemical bonds serve to ensure that atoms achieve stable electron configura-
tions by adding, removing, or sharing electrons. In this chapter we will simply review
the characteristics of the various types of bonds that can form in materials. These are
summarized in Table 1.1 and Fig. 1.1 and can be divided into two major categories:
the strong (primary) bonds between atoms (ionic. covalent, and metallic) and the
weak (secondary) van der Waals bonds between molecules. The position of an ele-
ment in the periodic table determines the type of chemical bonds it can form.

Elements in Groups I and II readily lose electrons to form cations (i.e., they are
strongly electropositive), while at the other end of the periodic table, elements in
Groups VI and VII readily gain electrons (they are strongly electronegative). Thus.
when these elements are brought together there will be an exchange of electrons to
form ionic compounds containing M* and X, where M is a Group I element and X
is a Group VII element; or M** and X*>~, where M is a Group II element and X is a
Group VI element.

The interaction energy between a pair of ions is proportional to (z°z e?)/r,
where z is the ionic charge and r is the distance between ions. However, we seldom
find discrete ion pairs: rather ions of a given charge try to be surrounded by as
many ions of the opposite charge as possible (Fig. 1.1b). In the crystalline state



TABLE 1.1 Summary of bond types.
Bond Energies Typical Typical
Bond Type (kJ - mol™") Materials Elements Remarks
lonic 500-1200" Ceramic Oxides Compounds of All exist as crystalline solids.
Gypsum Gpl.Gpll
Rock salt
Calcite
Covalent 150-750*° Diamond GpIV.GpV, States of matter at room
Glasses Gp VI temperature depend on
Silicon carbide intermolecular attraction.
Metallic 50-850° Metals Elements of Gp I- May be liquid or solid
[I1. Transition depending on binding
metals. Heavy energies.
elements of Gp IV
and V.
Hydrogen 10-30¢ Water F.O.N Can be considered weak ionic
or strong van der Waals.
Strongly influences material
behavior.
van der Waals 0.05-3 Thermoplastic Compounds of all Primarily intermolecular

polymers

clements

bonds. Dominate the beha-
vior and microstructure of
construction material. such as
concrete and asphalt.

? Lattice energies of crystal.

° Isolated multiple covalent bonds (as formed in N,, for example) can be as strong as 950 kJ - mol.
¢ Single hydrogen bond is about 2 kJ * mol™'.

Figure 1.1

The principal types of crys-
talline binding. In (a) neu-
tral atoms with closed
electron shells are bound
together weakly by the van
der Waals forces associated
with fluctuations in the
charge distributions. In

(b) electrons are trans-
ferred from the alkali
atoms to the halogen
atoms. and the resulting
ions are held together by
attractive electrostatic
forces between the positive
and negative ions. In (c) the
valence electrons are taken
away from each alkali atom
to form a community elec-
tron sea in which the posi-
tive ions are dispersed. In
(d) the neutral atoms ap-
pear to be bound together
by the overlapping parts of
their electron distributions.
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<

>

>

(a) van der Waals bonding
(solid argon)

@, &
ofle

(c) Metallic bonding
(sodium metal)

Chap. 1

Atomic Bonding

(b) Tonic bonding
(sodium chloride)

(d) Covalent bonding

(diamond)



(see Chapter 2), they take up specific arrangements to maximize the interactions
between ions of opposite charge; but in the gaseous or liquid state these ions are
free to move about. Hence, ionic solids will not conduct electricity unless they are
either in the molten state or dissolved in water, where the ions are free to move
under electric gradients.

1.3 COVALENT BONDS

For most elements, the need to lose or gain electrons will not be sufficient to form
ions (or the ions will be unstable), and valency requirements are satisfied by shar-
ing electrons. The simplest situation is the sharing of one pair of electrons between
two elements, as in hydrogen (H,) or methane (CH,), where there are four covalent
C—H bonds. Two atomic orbitals, which each contain one electron. overlap and
combine to form a single molecular 2rbital lying between the two atomic nuclei
(Fig. 1.1d). When more than one covalent bond is formed by an element, the atomic
orbitals may combine to adopt certain directional arrangements to increase their
degree of overlap with other atomic orbitals and hence the strength of the covalent
bond. This process is called hybridization. More than one atomic orbital from each
atom may be involved, leading to multiple bonds between atoms.

Another complication is that electrons are seldom shared equally between two
dissimilar atoms, but usually the electrons spend more time near the more elec-
tronegative atom (i.e., the atom with a greater tendency to attract electrons). There
is thus a statistical separation of charge so that the bond has a permanent dipole.
Such a bond is said to have partial ionic character, since an ionic bond implies com-
plete separation of charge. Conversely. an ionic bond can be said to have some co-
valent character: in this case. the atomic orbitals of the ions are distorted. leading to
a distortion of the ideal packing of ions in the crystal toward more directional
arrangements that favor this distortion.

Covalent bonds thus lead to the formation of a specific grouping of atoms
(molecules) in which all the atoms achieve stable electron configurations. Only a few
materials are bound together principally by covalent forces acting between atoms in
all directions: natural diamond and synthetic silicon carbide are common examples.
Most covalent materials are composed of covalently bonded molecules; whereas the
bonds between the atoms within the molecules are strong. the bonds between atoms
in adjacent molecules are generally much weaker and involve van der Waals forces
(see discussion in Sec. 1.5). Covalent molecules may range from simple molecules.
like H,, to the very complex macromolecules. such as organic polymers. which may
contain many thousands or millions of atoms in a single molecule.

1.4 METALLIC BONDS

Atoms of electronegative elements (e.g., chlorine, oxygen. or sulfur) can satisfy their
electron needs through covalent bonding. But this possibility is not open to the elec-
tropositive elements since these elements wish to lose electrons while covalent
bonding effectively adds electrons to an atom. This problem is solved by the metal-
lic bond: All atoms give up electrons to a “common pool.” becoming positive ions
with a stable electron configuration. The free electrons occupy extended delocalized
orbitals lying between the positive metal ions (Fig. 1.1c) so that the electrons are in-
dependent of any particular ion. These electron “clouds™ bind the ions together but

Sec. 1.4 Metallic Bonds 5



