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Preface

The renormalization-group approach is largely responsible for the considerable
success which has been achieved in the last ten years in developing a complete
quantitative theory of phase transitions. Before, there was a useful physical
picture of phase transitions, but a general method for making accurate quantitative
predictions was lacking. Existent theories, such as the mean-field theory of Landau,
sometimes reproduce phase diagrams reliably but were known to fail qualitatively
near critical points, where the critical behavior is particularly interesting be-
cause of its universal character.

In the mid 1960's Widom found that the singularities in thermodynamic quanti-
ties were well described by homogeneous functions. Kadanoff extended the homogeneity
hypothesis to correlation functions and linked it to the idea of scale invariance.
In the early 1970's Wilson showed how Kadanoff's rescaling could be explicitly
carried out near the fixed point of a flow in Hamiltonian space. He made the first
practical renormalization-group calculation of the flow induced by the elimination
of short-wave-length Fourier components of the order-parameter field. The univer-
sality of the critical behavior emerges in a natural way in this approach, with a
different fixed point for each universality class. The discovery by Wilson and
Fisher of a systematic expansion procedure in e for a system ind = 4 - ¢ dimen-
sions was followed by a cascade of calculations of critical quantities as a function
of d and of the order-parameter dimensionality n. Using field-theoretic techniques,
Brézin, Le Guillou, Zinn-Justin, Nickel, and others have turned the e expansion
into an astonishingly accurate tool for computing the critical behavior of three-
dimensional systems.

Another class of renormalization procedures has been developed, in which the
renormalization is carried out in real space rather than Fourier space. In the real-
space renormalization of a system of spins on a lattice, lengths are rescaled by
replacing cells of spins by single spins, following the intuitive scaling picture
of Kadanoff rather closely. Unlike the Fourier-space methods, real-space renormaliz-
ation works directly with a microscopic Hamiltonian and attempts to calculate non-
universal information, for example phase diagrams, in addition to universal quan-
tities. It is not a priori clear that renormalization will work on a microscopic

Tevel. There is no unique prescription for renormalizing in real space, and a con-
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siderable number of approximate renormalization techniques have been developed.
There have been applications to a wide variety of different physical systems. The
domain of applicability is by no means restricted to critical phenomena. Striking
successes have been achieved, but there are also some general problems with the
approach. This volume is a review of the present state of the art.

The Titerature on real-space renormalization is already too large to be reviewed
in a single volume. We have included contributions on five or six general areas
where, in our opinion, particularly significant developments have taken place. We
decided not to repeat at length material already covered in the 1976 review article
by Niemeijer and van Leeuwen in Vol.6 of the Domb-Green series Phase Transitions
and Critical Phenomena.

In the introductory chapter we give an overview of real-space renormalization
and discuss some of the fundamental problems. Griffiths-Pearce singularities,
exact differential renormalization, and the phenomenological renormalization re-
lated to finite-size scaling are also considered. Chapter 2, by Burkhardt, is de-
voted to bond-moving and variational approximation techniques. In Chapter 3 Swendsen
reviews Monte Carlo renormalization methods. Real-space renormalization procedures
have been developed for quantum systems and for dynamic critical phenomena. These
two topics are discussed by Pfeuty, Jullien, and Penson and by Mazenko and Valls
in Chapters 4 and 5, respectively. Chapters 6 and 7 review two specific areas of
application where real-space renormalization is making a significant contribution.
In Chapter 6, by Schick, two-dimensional adsorbed systems are considered, and in
Chapter 7, by Stanley, Reynolds, Redner, and Family, applications to percolation
and polymers.

The suggestion for a Topics volume on real-space renormalization originally
came from K. Binder, whom we thank for his encouragement. We also thank the con-
tributors and H. Lotsch of Springer-Verlag for their cooperation in preparing
a review of this rapidly developing field.

Delft and Philadelphia, T.W. Burkhardt
March 1982 J.M.J. van Leeuwen
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1. Progress and Problems in Real-Space Renormalization

T.W.Burkhardt and J. M. J. van Leeuwen

With 5 Figures

The real-space renormalization approach to statistical mechanics is reviewed. A
brief account of progress in the field is given. Some fundamental difficulties with
the approach are discussed, in particular the proliferation of interactions, the
ambiguity in the choice of the weight function, and the peculiarities in the ther-
modynamic Timit noted by GRIFFITHS and PEARCE. Two methods which avoid the problem
of proliferation of interactions are considered in some detail: differential real-
space renormalization and the phenomenological renormalization related to finite-

size scaling.

1.1 Introduction

Following WILSON's first application of renormalization-group ideas to critical
phenomena, there has been an enormous activity in the field [1.1-9]. Renormaliz-
ation techniques in both momentum and position space have been developed. In the
momentum-space or field-theoretical approach, critical exponents and other univer-
sal quantities have been calculated in expansions ine = d- d*, where d is the di-
mension of interest and d* is the upper or Tower critical dimension. The e expan-
sion has lead to extremely precise estimates [1.10] of the critical exponents of
several three-dimensional systems. Momentum-space renormalization-group techniques
have also been applied to dynamic critical phenomena [1.11]. The starting point

in a momentum-space renormalization-group calculation is a coarse-grained Hamil-
tonian in which details irrelevant to the universal critical behavior have been
eliminated. This Hamiltonian is a functional of the order-parameter field. Renor-
malization results from an elimination of the short-wavelength Fourier components
of the field and subsequent rescaling of lengths and of the field.

Position or real-space renormalization deals directly with the microscopic
Hamiltonian. Most of the applications have considered spins on a lattice. In the
renormalization, new spin variables which replace blocks of the original spins are
defined and their effective interactions determined. Except in a few special ap-
plications the real-space renormalization procedures devised thus far are not
exact but rely on approximations lacking an expansion parameter. So far the approach



has been less successful in predicting the critical exponents of three-dimensional
systems than the extrapolation procedures incorporating exact results of the £ ex-
pansion. However, for systems, particularly those with discrete spins, in low di-
mensions where the critical fluctuations are strong and the e expansion not very
useful, real-space renormalization is one of the most powerful of the calculational
techniques of comparable simplicity currently available. As the real-space renor-
malization procedures are directly applicable to microscopic models of spins on a
lattice with no prior coarse graining, one can calculate nonuniversal as well as
universal quantities, for example, the phase diagram as a function of the interaction
parameters, or the specific heat as a function of the temperature. Real-space re-
normalization also provides a natural description of a first-order transition [1.12,
13]. The approach has an intuitive simplicity and can often be conveniently tailored
to a particular application.

This book is primarily devoted to developments in real-space renormalization which
have taken place since the preparation of the 1976 review article [1.13] in the
Domb-Green series. The reader seeking a detailed introduction to the subject is re-
ferred to [1.13]. Section 1.2 of this chapter contains a brief review of the real-
space renormalization approach. Sections 1.3,4 summarize some of the more signifi-
cant recent developments in the field not covered in [1.13]. Certain of these deve-
lopments are treated in detail in other contributions to this volume. In Sect.l.5
some of the fundamental inherent difficulties in real-space renormalization are
discussed, in particular the proliferation of interactions which results from the
renormalization operation, the problem of choosing a suitable weight function, and
the peculiarities in the thermodynamic 1imit pointed out by GRIFFITHS and PEARCE
[1.14-16]. Sections [1.6,7] describe two successful procedures that manage to avoid
these problems. In Sect.1.6 exact differential renormalization transformations
[1.17-22] are considered. An exact differential transformation has been devised
for the two-dimensional Ising model with nearest-neighbor interactions on a
triangular lattice [1.17]. No additional couplings are generated by the re-
normalization, but the couplings become spatially dependent. Section 1.7 contains
a discussion of "phenomenological renormalization" [1.23], a type of finite-size
scaling analysis that bears some resemblance to real-space renormalization. No
proliferation of interactions occurs in phenomenological renormalization either.

The approximation can be systematically improved and the convergence of the results
observed. Section 1.8, which completes the chapter, contains concluding remarks.



1.2 Review of Real-Space Renormalization

Real-space renormalization methods implement an intuitive picture, proposed by
KADANOFF [1.24] several years before the renormalization-group breakthrough, to
explain certain universal aspects of critical behavior. In this picture, cells of
spins in a nearly critical system behave 1ike individual spins in a system some-
what farther from criticality. A possible assignment of spins into cells is shown
in Fig.1l.1. The dots represent the original or site spins, which we denote by {s}
and the crosses the cell spins {s'}. The central thermodynamic quantity of inter-
est is the free energy

f = Tim (1/N) In Z , (1.1)
No

where N is the number of s spins and the partition function Z is defined by
Z =7 exp H(s) . (1.2)
S
H(s) is the dimensionless Hamiltonian (in which a factor -(kBT)—1 has been incor-
porated) of the system of s spins. The sum in (1.2) is over all configurations of
the s spins.

Fig.1.1. Possible assignment of spins

to cells. The dots represent site spins
and the crosses cell spins. There are four
sites per cell

]Ililll: :IIIHIII {]IIHIIII
]IIHII[ ]IIIHII[ ]IIHIII:
:IIIHIII[ ]IIHi||[ :IIIHHIII{

Adding an arbitrary spin-independent constant to H(s) changes the free energy
by an additive constant. It is convenient to choose a convention such as ESH(S)
=0 or H =0 for a particular spin configuration in order to define the Hamiltonian
H(s) uniquely.

In real-space renormalization the interactions between the cell spins are calcu-
lated from the interactions between the site spins. A Hamiltonian G + H'(s') for
the cell spins (where G is independent of the spin configurations and the zeroes
of H'(s") and H(s) are fixed according one of the conventions mentioned above) is



defined by the renormalization transformation

explG + H'(s')] = ] P(s',s) exp H(s) . (1.3)
s
The weight function P(s',s), which couples the cell and site spins, satisfies

J P(s',s) =1 , (1.4)

o
which insures that the partition functions of the cell and site-spin systems are
the same. The condition (1.4) is not very restrictive, and a variety of weight
functions [1.13] have been tried. Generally (some exceptions are noted below), the
transformation is designed so that the s' and s spins are spins of the same type,
for example, in applications to the Ising model both the s' and s spins take the
values +1. Evaluating the sum over configurations in (1.3) reduces the number of
spins and enlarges the Tattice constant. In momentum-space renormalization [1.1-9]
degrees of freedom are eliminated and the length scale expanded by integrating
the Bolztmann factor exp H of the coarse-grained Hamiltonian over short-wavelength
fluctuations of the spin variables.

It is useful to expand H(s) in the form H(s) = EaKaﬂa(s), where the Ka are coup-
ling constants and the Qa(s) a complete set of interactions generated by repeated
application of (1.3) from the initial Hamiltonian of interest. Because of the pro-
liferation of interactions under the renormalization operation, the set generally
contains an infinite number of elements, but in approximate calculations only a
finite subset is taken into account. H' can also be expanded in terms of the Q>
with coupling constants K&. Equation (1. 3) implies a set of equations

K' =K' (K) (1.5)

relating the coupling constants of the original and renormalized spins. Here K and
K' denote the entire sets of K, and K;. The transformation law

f(K) = g(kK) + =5 f(K'") (1.6)

for the free energy per spin also follows from (1.3,4). In deriving (1.6), one has
written g=G/N and bd =N/N', b being the length rescaling factor, and the thermo-
dynamic Timit is implicitly taken to be N-w. From (1.6) one sees that g(K) is the
contribution to the free energy from the degrees of freedom eliminated in the re-
normalization step.

Once the functions K'(K) and g(K) are known, the free energy may be calculated
with the formula

T 1 , 1
=1 Eﬁag(g("’) ¥ ;]meﬁf(ﬁ(m)) : (1.7)
n

obtained by iterating (1.5,6). g( ) in (1.7) denotes the set of coupling constants
after n iterations. In the renormalization-group approach [1.1-9,13] one can cal-



