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PREFACE

This book contains a collection of results relating to the normal
distribution. It is a compendium of properties, and problems of
analysis and proof are not covered. The aim of the authors has
been to list results which will be useful to theoretical and
applied researchers in statistics as well as to students.

Distributional properties are emphasized, both for the normal
law itself and for statistics based on samples from normal popula-
tions. The book covers the early historical development of the
normal law (Chapter 1); basic distributional properties, including
references to tables and to algorithms suitable for computers
(Chapters 2 and 3); properties of sampling distributions, including
order statistics (Chapters 5 and 8), Wiener and Gaussian processes
(Chapter 9); and the bivariate normal distribution (Chapter 10).
Chapters 4 and 6 cover characterizations of the normal law and cen-
tral limit theorems, respectively; these chapters may be more use-
ful to theoretical statisticians. A collection of results showing
how other distributions may be approximated by the normal law com-
pletes the coverage of the book (Chapter 7).

Several important subjects are not covered. There are no
tables of distributions in this book, because excellent tables are
available elsewhere; these are listed, however, with the accuracy
and coverage in the sources. The multivariate normal distribution

other than the bivariate case is not discussed; the general linear



vi Preface

model and regression models based on normality have been amply
documented elsewhere; and the applications of normality in the
methodology of statistical inference and decision theory would
provide material for another volume on their own.

In citing references, the authors have tried to balance the
aim of giving historical credit where it is due with the desira-
bility of citing easily obtainable sources which may be consulted
for further detail. 1In the latter case, we do not aim to cite
every such work, but only enough to give the researcher or
student a readily available source to which to turn.

We would like to thank the following persons for reviewing
parts of the manuscript and giving helpful suggestions: Lee J.
Bain, Herbert A. David, Maxwell E. Engelhardt, C. H. Kapadia,

C. G. Khatri, Samuel Kotz, Lloyd S. Nelson, Donald B. Owen--who
also gave editorial guidance, Stephen M. Stigler, Farroll T.
Wright, and a referee. For assistance in typing the manuscript
and for their infinite patience, we thank Connie Brewster, Sheila
Crain, Millie Manley, and Dee Patterson; we would like to thank
Dr. Maurits Dekker and the staff at MDI for their work in taking
the manuscript through production. We would also like to thank
Southern Methodist University for giving one of us leave for a

semester in order to do research for the manuscript.

J.K.P. C.B.R.
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chapter 1

GENESIS: A HISTORICAL BACKGROUND

I know of scarcely anything so apt to impress

the imagination as the wonderful form of cosmic

order expressed by the "Law of Frequency of

Error." The law would have been personified by

the Greeks and deified, if they had known of it.

It reigns with serenity and in complete self-

effacement amidst the wildest confusion.
So wrote Sir Francis Galton (1889, p. 66) about the normal distri-
bution, in an age when the pursuit of science was tinged with the
romanticism of the nineteenth century. In this age of computers,
it is hard to find enthusiasm expressed with the sense of wonder
of these men of letters, so much do we take for granted from modern
technology.

In the seventeenth century Galileo (trans. 1953; 1962, pp.
303-309) expressed his conclusions regarding the measurement of
distances to the stars by astronomers (Maistrov, 1974, pp. 31-34).
He reasoned that random errors are inevitable in instrumental ob-
servations, that small errors are more likely to occur than large
ones, that measurements are equally prone to err in one direction
(above) or the other (below), and that the majority of observations
tend to cluster around the true value. Galileo revealed here many
of the characteristics of the normal probability distribution law,
and also asserted that (random) errors made in observation are dis-

tinct from (systematic) final errors arising out of computation.



2 Chapter 1

Although the study of probability began much earlier, modern
statistics made its first great stride with the publication in 1713
of Jacob Bernoulli's Ars Conjectandi, in which Bernoulli proved the
weak law of large numbers. The normal distribution first appeared
in 1733 as an approximation to the probability for sums of binomi-
ally distributed quantities to lie between two values, when Abraham
de Moivre communicated it to some of his contemporaries. A search
by Daw and Pearson (1972) confirmed that several copies of this note
had been bound up with library copies of de Moivre's Miscellanea
Analytica which were printed in 1733 or later.

The theorem appeared again in de Moivre's book The Doctrine of
Chances (1738, 1756; 1967; see also David, 1962, where it appears as
an appendix). Although the main result is commonly termed ''the de
Moivre-Laplace limit theorem" (see [3.4.8]), the same approximation
to binomial probabilities was obtained by Daniel Bernoulli in 1770-
1771, but because he published his work through the Imperial Academy
of Sciences in St. Petersburg, it remained there largely unnoticed
until recently (Sheynin, 1970). Bernoulli also compiled the earli-
est known table of the curve y = exp(—u2/100); see Table 1.1.

The natural development of probability theory into mathematical
statistics took place with Pierre Simon de Laplace, who 'was more
responsible for the early development of mathematical statistics
than any other man'" (Stigler, 1975, p. 503). Laplace (1810, 1811;
1878-1912) developed the characteristic function as a tool for large
sample theory and proved the first general central limit theorem;
broadly speaking, central limit theorems show how sums of random
variables tend to behave, when standardized to have mean zero and
unit variance, like standard normal variables as the sample size
becomes large; this happens, for instance, when they are drawn as
random samples from 'well-behaved'" distributions; see [6.1].

Laplace showed that a class of linear unbiased estimators of
linear regression coefficients is approximately normally distributed
if the sample size is large; in 1812 (Laplace, 1812, chap. VIII) he
proved that the probability distribution of the expectation of life
at any specified age tends to the normal (Seal, 1967, p. 207).
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4 Chapter 1

He derived the asymptotic distribution of a single-order statistic
in a linear regression problem as normal, when the parent distribu-
tion is symmetric about zero and well behaved. In 1818 he showed
that when the parent distribution is normal, the least squares
estimator (LSE) has smaller variance than any linear combination of
observations (Stigler, 1973). In the course of deriving this re-
sult, Laplace showed that the asymptotic joint distribution of the
LSE and his order statistic estimator is bivariate normal (see
Chapter 9), and obtained the minimum variance property of the LSE
under normality while trying to combine the two estimators to re-
duce the variance.

These results pertain to Laplace's work as it relates to the
normal distribution. The scope of his work is much fuller; for
further discussion, see Stigler (1973, 1975a).

Problems arising from the collection of observations in astron-
omy led Legendre in 1805 to state the least squares principle, that
of minimizing the sum of squares of "errors' of observations about
what we would call in modern terms a regression plane; Legendre
also obtained the normal equations. In 1809, Carl Friedrich Gauss
published his Theoria Motus Corporum Coelestium, stating that he had
used the least squares principle since 1795. This led to some con-
troversy as to priority, involving Gauss, Laplace, Legendre, and
several colleagues of Gauss (Plackett, 1972), but it all hinged upon
whether publication should be the criterion for settling the issue
or not. In the nineteenth century, research was often done indepen-
dently, without knowledge of the achievements of others, as we shall
see later. It comes as no surprise, then, that Gauss knew nothing
of Legendre's earlier work when he published his Theoria Motus.

In this work, Gauss showed that the distribution of errors,
assumed continuous, must be normal if the location parameter has
(again in modern terminology) a uniform prior, so that the arithme-
tic mean is the mode of the posterior distribution (Seal, 1967).
Gauss's linear least squares model was thus appropriate when the

"errors' come from a normal distribution. An American mathematician,
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Robert Adrain (1808), who knew nothing of Gauss' work but who may
have seen Legendre's book, derived the univariate and bivariate
normal distributions as distributions of errors, and hence the
method of least squares (Stigler, 1977), but his work did not in-
fluence the development of the subject.

The study of least squares, or the theory of errors, was to
proceed for several decades without much further interaction with
developing statistical theory. The normal distribution had not yet
found its place in either theoretical or applied branches of the
subject, and Gauss gave little further consideration to it (Seal,
1967). However, he points out (see Maistrov, 1974, pp. 155-156)
that under the normal law, errors of any magnitude are possible.
Once the universality of the normal law was accepted and then
assumed, as it was later for some time, scientists also assumed
that all observations should therefore be retained, resulting in
a delay in developing methods for identifying and discarding out-
liers. For a good summary of Gauss' contributions to statistics
and the theory of least squares, see Sprott (1978) or Whittaker
and Robinson (1924, 1926).

The astronomer Friedrich Wilhelm Bessel (1818) published a
comparison of the observed residuals and those expected from Gauss'
normal law of errors and found a remarkably close agreement, from
sets of 300 or more measurements of angular coordinates of stars.
The publication of a book by Hagen (1837), which contained a deriv-
ation of the normal law as an approximation to the distribution of
the total error, when that error is assumed to be the resultant of
an infinitely large number of equal but equally likely positive or
negative elementary errors, may have led Bessel in 1838 to develop
the hypothesis of elementary errors. Bessel thus derived the nor-
mal law as an approximation for the total error, assumed now to be
the sum of a large number of mutually independent, but not identi-
cally distributed elementary errors with well-behaved properties,
including symmetrical distribution about zero.

The hypothesis of elementary errors became firmly established,

particularly among astronomers like G. B. Airy (1861), who



