SYSTEMS & CONTROL ENCYCLOPEDIA

Theory, Technology, Applications

Editor-in-Chief

Madan C Singh umist, manchester, us

SYSTEMS & CONTROL ENCYCLOPEDIA

Theory, Technology, Applications

VOLUME 8 INDEXES

Editor-in-Chief

Madan G Singh

University of Manchester
Institute of Science and Technology,
Manchester, UK

PERGAMON PRESS

OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO U.K.

Pergamon Press, Headington Hill Hall,

Oxford, OX3 0BW, England

U.S.A.

Pergamon Press Inc., Maxwell House, Fairview Park,

Elmsford, New York 10523, U.S.A.

PEOPLE'S REPUBLIC

OF CHINA

FEDERAL REPUBLIC

OF GERMANY

BRAZIL

AUSTRALIA

JAPAN

CANADA

Pergamon Press, Qianmen Hotel, Beijing,

People's Republic of China

Pergamon Press, Hammerweg 6,

D-6242 Kronberg, Federal Republic of Germany

Pergamon Editora, Rua Eça de Queiros, 346,

CEP 04011, São Paulo, Brazil

Pergamon Press Australia, P.O. Box 544,

Potts Point, N.S.W. 2011, Australia

Pergamon Press, 8th Floor, Matsuoka Central Building,

1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan

Pergamon Press Canada, Suite 104,

150 Consumers Road, Willowdale, Ontario M2J 1P9,

Canada

Copyright © 1987 Pergamon Books Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First edition 1987

Library of Congress Cataloging in Publication Data

Main entry under title:

Systems and control encyclopedia.

Includes bibliographies.

- 1. System analysis—Dictionaries.
- 2. Control theory—Dictionaries.
- 3. Systems engineering—Dictionaries.
- I. Singh, Madan G.

QA402.S968 1987 003'.03'21 86-15085

British Library Cataloguing in Publication Data

Systems and control encyclopedia: theory, technology, applications.

1. Control theory—Dictionaries I. Singh, Madan G. 003'.03'21 QA402

ISBN 0-08-028709-3 (set)

SYSTEMS & CONTROL ENCYCLOPEDIA

Theory, Technology, Applications

EDITORIAL ADVISORY BOARD

CHAIRMAN

John F Coales FRS

University of Cambridge Cambridge, UK

A Bensoussan

Institut National de Recherche en Informatique et en Automatique Le Chesnay, France

P Eykhoff

University of Technology Eindhoven, The Netherlands

C S Holling

University of British Columbia Vancouver, British Columbia, Canada

L R Klein

University of Pennsylvania Philadelphia, Pennsylvania, USA

G J Klir

State University of New York at Binghamton Binghamton, New York, USA

M Mansour

Eidgenössische Technische Hochschule Zürich Zürich, Switzerland

M G Singh

University of Manchester Institute of Science and Technology Manchester, UK

M Thoma

Universität Hannover Institut für Regelungstechnik Hannover, FRG

T Vámos

Hungarian Academy, of Sciences Budapest, Hungary

HONORARY EDITORIAL ADVISORY BOARD

H Akashi

Kyoto University Kyoto, Japan

B D O Anderson

Australian National University Canberra, Australia

K J Åström

Lund Institute of Technology Lund, Sweden

M Athans

Massachusetts Institute of Technology Cambridge, Massachusetts, USA

J L Douce

University of Warwick Coventry, UK

W Findeisen

Technical University of Warsaw Warsaw, Poland

G Giralt

Centre National de la Recherche Scientifique Toulouse, France

G Guardabassi

Istituto di Elettrotecnica ed Elettronica Milan, Italy

Y C Ho

Harvard University Cambridge, Massachusetts, USA

R Isermann

Institut für Regelungstechnik Darmstadt, FRG

H Kwakernaak

Twente University of Technology Enschede, The Netherlands

J Lagasse

Affaires Scientifiques et Techniques Renault Rueil Malmaison, France

R E Larson

Systems Control Inc.
Palo Alto, California, USA

I Lefkowitz

Case Western Reserve University Cleveland, Ohio, USA

Sir James Lighthill FRS

University College London, UK

P N Nikiforuk

University of Saskatchewan Saskatoon, Saskatchewan, Canada

H H Rosenbrock FRS

University of Manchester Institute of Science and Technology
Manchester, UK

M K Sain

University of Notre Dame Notre Dame, Indiana, USA

G N Saridis

Rensselaer Polytechnic Institute Troy, New York, USA

B Tamm

Tallinn Technical University Tallinn, USSR

H T Thanheiser

European Institute of Business Administration Fontainebleau, France

T Thomas

Unilever PLC London, UK

Y Z Tsypkin

USSR Academy of Sciences Moscow, USSR

J C West

University of Bradford Bradford, UK

SUBJECT EDITORS

Applications of Control to Aerospace and Aeronautics

M Pélegrin

Centre d'Etudes et de Recherches de Toulouse Toulouse, France

Applied Robotics, Control Applications to Manufacturing Industries, Flexible Manufacturing and Ergonomics

P Drazan

University of Wales Institute of Science and Technology Cardiff, UK

Building Systems

D J Fisk

Department of the Environment London, UK

Classical Control, CAD of Control Systems, Multivariable Control

N Munro

University of Manchester Institute of Science and Technology Manchester, UK

Database Management, Theory and Applications of Distributed Computing for Control

E Gelenbe

Université Paris-Sud Paris, France

Distributed Parameter Systems, Discrete Systems

J L Lions

Centre National d'Etudes Spatiales Paris, France

Environmental Measurements, Measurements in Chemistry

Y Sawaragi

Japan Institute of Systems Research Kyoto, Japan

Environmental Systems and Agricultural Systems

E Halfon

National Water Research Institute Burlington, Ontario, Canada Hierarchical Control, Decentralized Control, Model Simplification for Complex Systems Team Theory, Robustness and Sensitivity

A Titli

Centre National de la Recherche Scientifique Toulouse, France

History of Systems and Control

S Bennett

University of Sheffield Sheffield, UK

Management Systems, Educational Systems, Health Care Systems, Social Effects of Automation

A P Sage

George Mason University Fairfax, Virginia, USA

Measurements in the Biological Area

P A Payne

University of Manchester Institute of Science and Technology Manchester, UK

Measurements in the Control Area including Intelligent Instrumentation

M G Mylroi

University of Bradford Bradford, UK

Modelling and Control of Biological Systems, Biomedical Engineering

D A Linkens

University of Sheffield Sheffield, UK

Pattern Recognition, Fuzzy Systems

M M Gupta

University of Saskatchewan Saskatoon, Saskatchewan, Canada

Physical Systems Modelling, Identification, Estimation Theory and Applications, Signal Processing

T Kailath

Stanford University Stanford, California, USA

L Ljung

Linköping University Linköping, Sweden

Process Control Applications

A J Niemi

R Ylinen

Technical Research Centre of Finland Espoo, Finland

Realization Theory for Linear and Nonlinear Systems

C Lobry

Nice, France

M Fliess

Centre National de la Recherche Scientifique Gif-sur-Yvette, France

Y Rouchaleau

Ecole des Mines de Paris Valbonne, France

Self-Tuning Regulators and Adaptive Control, Stochastic Systems

D W Clarke

University of Oxford Oxford, UK

Simulation Techniques, Model Simplification

B P Zeigler

University of Arizona Tucson, Arizona, USA Stability Theory, General Systems Theory

C I Klir

State University of New York at Binghamton Binghamton, New York, USA

Static Optimization, Dynamic Optimization, Optimal Control, Game Theory

A Bensoussan

Institut National de Recherche en Informatique et en Automatique Le Chesnay, France

Technology of Final Control Elements

J P Elloy

Ecole Nationale Supérieure de Mécanique Nantes, France

Transportation Systems, Communication Systems

A J Fossard

Ecole Nationale Supérieure de l'Aeronautique et de l'Espace Toulouse, France

Utility Systems and Energy Systems

A Brameller

University of Manchester Institute of Science and Technology Manchester, UK

CONTENTS

Honorary Editorial Advisory Board	vi
Subject Editors	vii
Foreword	Volume 1
Preface	Volume 1
Introduction	Volume 1
Guide to Use of the Encyclopedia	Volume 1
Alphabetical Entries	
A-Com	Volume 1
Con-E	Volume 2
F–H	Volume 3
I–L	Volume 4
M-O	Volume 5
P-Sim	Volume 6
Sin–Z	Volume 7
Systematic Outline of the Encyclopedia	5193
List of Contributors	5225
Author Citation Index	5275
Subject Index	5423
Information Sources in Systems and Control	5575
List of Acronyms and Abbreviations	5587

SYSTEMATIC OUTLINE OF THE ENCYCLOPEDIA

The Systematic Outline of the Encyclopedia, which is supplementary to the Subject Index, groups the contents of the Encyclopedia by article title under the main subject headings used in commissioning the Encyclopedia. These headings, which are summarized in the Classified List of Contents below, are further subdivided into appropriate subheadings as each subject dictates. The reader is thus presented with a general overview of the contents of the Encyclopedia. Some articles inevitably relate equally well to more than one heading. Rather than make an arbitrary decision as to which section they belong, each article has been listed wherever appropriate.

Article titles can be located by two methods: (a) by referring to the Classified List of Contents below and then looking up the appropriate Subject Area in the main part of the Analytical List of Contents, or (b) by consulting the Alphabetical List

of Contents given overleaf.

The publisher wishes to thank Professor Singh for help in overseeing the collation of the Systematic Outline which was prepared by Danny Dicks, Debbie Puleston and other members of the editorial staff of the Encyclopedia from the original commissioning plans of the Subject Editors.

CLASSIFIED LIST OF CONTENTS

1. THEORY

A. Modelling and Simulation

- (i) Physical Systems Modelling
- (ii) Identification
- (iii) Estimation Theory
- (iv) Signal Processing
- (v) Simulation Techniques
- (vi) Model Simplification

B. Systems and Control Theory

- (i) Fuzzy Systems
- (ii) Pattern Recognition
- (iii) General Systems Theory
- (iv) Stability Theory
- (v) Realization Theory for Linear and Nonlinear Systems
- (vi) Classical Control
- (vii) Computer-Aided Design of Control Systems
- (viii) Multivariable Control
- (ix) Distributed Parameter Systems
- (x) Discrete Systems
- (xi) Self-Tuning Regulators and Adaptive Control

C. Optimization and Operations Research

- (i) Static Optimization
- (ii) Dynamic Optimization
- (iii) Optimal Control
- (iv) Game Theory
- (v) Stochastic Systems
- (vi) Robustness and Sensitivity

D. Complex Systems Theory

- (i) Hierarchical Optimization and Control
- (ii) Decentralized Control
- (iii) Model Simplification for Complex Systems
- (iv) Singular Perturbations
- (v) Stability of Interconnected Systems
- (vi) Team Theory

2. TECHNOLOGY

(i) Technology of Actuators

- (ii) Special Actuators Required in Communications, Power Generation, Nuclear Industry, etc.
- (iii) Measurements in the Control Area
- (iv) Intelligent Instrumentation
- (v) Measurements in the Biological Area
- (vi) Environmental Measurements
- (vii) Measurements in Chemistry
- (viii) Database Management
- (ix) Distributed Control

3. APPLICATIONS

A. Technological Applications

- (i) Process Control in Chemical Industries (Paper, Cement, Sugar, etc.)
- (ii) Control of Power Generation and Distribution
- (iii) Control in Aeronautics and Space
- (iv) Robotics

B. Semitechnological Applications

- (i) Road Traffic Control
- (ii) Air Traffic Control
- (iii) Other Transportation Systems
- (iv) Manufacturing Systems
- (v) Building Systems
- (vi) Utility Systems (Gas, Electricity, Water)
- (vii) Communication Systems
- (viii) Management Systems
- (ix) Health Care Systems
- (x) Social Effects of Automation

C. Nontechnological Applications

- (i) Modelling and Control of Biological Systems
- (ii) Biomedical Engineering
- (iii) Environmental Systems
- (iv) Agricultural Systems

4. HISTORY

- (i) History of Theoretical Techniques
- (ii) History of Applications
- (iii) History of Organizations

ALPHABETICAL LIST OF CONTENTS

This list enables the reader to locate all the headings and subheadings in the Systematic Outline. Major subdivisions of the Outline are indicated by capitals.

Actuator Technology	2.i
Adaptive Control and Self-Tuning Regulators .	1.B.xi
Aerospace Control	
Agricultural Systems	3.C.iv
Air Traffic Control	3.B.ii
APPLICATIONS	3
Automation, Social Effects	3.B.x
Biological Measurements	2.v
Biological Systems Modelling and Control	3.C.i
Biomedical Engineering	3.C.ii
Building Systems	3.B.v
Chemical Industries Process Control	3.A.i
Chemical Measurements	2.vii
Classical Control	1.B.vi
Communication Systems	3.B.vii
COMPLEX SYSTEMS THEORY	1.D
Computer-Aided Design of Control Systems	1.B.vii
CONTROL AND SYSTEMS THEORY	1.B
Control in Aeronautics and Space	3.A.iii
Control of Power Generation and Distribution .	3.A.ii
Database Management	2.viii
Decentralized Control	1.D.ii
Design of Control Systems, Computer-Aided	1.B.vii
Discrete Systems	1.B.x
Distributed Control	2.ix
Distributed Parameter Systems	1.B.ix
Dynamic Optimization	1.C.ii
Electricity Systems	3.B.vi
Environmental Measurements	2.vi
Environmental Systems	
Estimation Theory	1.A.iii
Fuzzy Systems	1.B.i
Game Theory	
Gas Systems	3.B.vi
General Systems Theory	1.B.iii
Health Care Systems	3.B.ix
Hierarchical Optimization and Control	1.D.i
HISTORY	
Identification	
Intelligent Instrumentation	2.iv
Linear Systems Realization Theory	
Management Systems	
Manufacturing Systems	3.B.iv
Measurements in Chemistry	2.vii
Measurements in the Biological Area	2.v
Measurements in the Control Area	2.iii
Model Simplification	1.A.vi

Model Simplification for Complex Systems	. 1.	D.iii
Modelling and Control of Biological Systems	. 3.	.C.i
MODELLING AND SIMULATION	. 1.	A
Modelling of Physical Systems	. 1.	A.i
Multivariable Control	. 1.	B.vii
Nonlinear Systems Realization Theory	. 1.	B.v
NONTECHNOLOGICAL APPLICATIONS	. 3.	C
OPERATIONS RESEARCH AND		
OPTIMIZATION	. 1.	C
Optimal Control		
OPTIMIZATION AND OPERATIONS		
RESEARCH	1	C
Pattern Recognition		
Physical Systems Modelling	1	Ai
Power Generation and Distribution Control		
Process Control in Chemical Industries (Paper,		7 1.11
Cement, Sugar etc.)	3	Αi
Realization Theory for Linear and Nonlinear		
Systems	1	Rν
Road Traffic Control	3	Ri
Robotics		
Robustness and Sensitivity		
Self-Tuning Regulators and Adaptive Control	. 1	R vi
SEMITECHNOLOGICAL APPLICATIONS		
Sensitivity and Robustness	1	C vi
Signal Processing	. 1	A iv
SIMULATION AND MODELLING		
Simulation Techniques		
Singular Perturbations		
Social Effects of Automation		
Special Actuators Required in	. 5.	. В.х
Communications, Power Generation, Nuclear		
Industry etc	2	8
Stability of Interconnected Systems		
Stability Theory		
Static Optimization	1.	C i
Stochastic Systems		
SYSTEMS AND CONTROL THEORY	1	D.V
Team Theory		
TECHNOLOGICAL APPLICATIONS		
TECHNOLOGY		./1
Technology of Actuators		2
THEORY		.1
Transportation Systems	. 1	D : ::
Hillity Systems(Cos. Flootrigity, Water)	.).	D.I-1
Utility Systems(Gas, Electricity, Water)	. 3.	D.VI
water systems	5	K VI

ANALYTICAL LIST OF CONTENTS

1. THEORY

A. Modelling and Simulation

Physical Systems Modelling (*i*)

Dynamic-Systems Modelling: Basic Principles and Lumped-Parameter Systems **Dynamic-Systems Modelling:** Distributed-Parameter Models and Discretization Ordinary Differential Equations Stationary Time Series and Their Spectra

(ii) Identification

Estimation or Identification Extended Least Squares Method Fuzzy Identification of Systems Fuzzy Systems: Identification Fuzzy Systems: Simultaneous Identification and Control Generalized Least Squares Method Identification: Asymptotic Theory Identification: Basic Problem Identification: Correlation Methods Identification: Experiment Design Identification: Frequency-Domain Methods Identification: History Identification: Instrumental Variable **Techniques** Identification: Least Squares Method Identification: Maximum Likelihood Method

Identification: Model Structure

Determination

Identification: Practical Aspects Identification: Pseudo-Random Signal

Method Identification: Recursive Methods Identification: Time-Domain Methods Identification: Transient- and Frequency-Response Methods

Parameter Estimation: Basic Problem Parameter Estimation: Fuzzy Logic Validation of Identified Models Validation of Simulation Models:

General Approach

Validation of Simulation Models: Statistical Approach

(iii) Estimation Theory

(a) Nonlinear Estimation Theory

Extended Kalman Filter Nonlinear Estimation Nonlinear Estimation Theory: Asymptotic Analysis Methods Nonlinear Estimation Theory: Implications for Stochastic Control Nonlinear Filtering and Quantum **Physics** Nonlinear Filtering: Computational Aspects Nonlinear Filtering: Iterated Ito Integral **Expansions**

(b) Linear Estimation with Given Second-Order Statistics

Block Matrix Formulae Constant-Parameter Systems: Fast Algorithms Discrete-Time Processes: Innovations Distributed Parameter Systems: Estimation and Control Kalman Filter Formulae: Variations Kalman Filtering: Applications Kalman Filtering: State-Space Models for Discrete-Time Processes Matrix Triangularization: Givens Transformations Matrix Triangularization: Householder Transformations Parameter Estimation: Basic Problem Parameter Estimation: Fuzzy Logic Random Number Generation Smoothing Algorithms Smoothing Algorithms, Two-Filter State-Space Modelling: Square Root Algorithms State-Space Modelling: State-Space Transformation

(iv) Signal Processing

Adaptive Signal-Processing Algorithms: An Introduction Adaptive Signal-Processing Algorithms: Convergence and Tracking Adaptive Signal-Processing Algorithms: On-Line Detection of Abrupt Changes Adaptive Signal-Processing Algorithms: Rare Events and Large Deviations

See also: Measurements in the Control Area (2.iii)

(v) Simulation Techniques

(a) Simulation Methodology: General

Simulation in Automatic Control
Simulation Methodology and Model
Manipulation
Simulation Methodology and Systems
Control and Management
Simulation Methodology: Top-Down
Approach
Validation of Simulation Models:
General Approach
Validation of Simulation Models:
Statistical Approach

(b) Simulation Modelling Systems Formalisms

Model Specification Interfaces Models as System-Theoretic Specifications Simulation Models: Taxonomy Simulation Taxonomy

(c) Simulation Modelling Formalisms

Formalism Simulation Modelling Formalism, Activity-Based Simulation Modelling Formalism: Arithmetic Relators Simulation Modelling Formalism: Bond Graphs Simulation Modelling Formalism: Cellular Automata Simulation Modelling Formalism, Discrete Arithmetic-Based Simulation Modelling Formalism, Event-Based Simulation Modelling Formalism: Extended Petri-Net Graphs Simulation Modelling Formalism: Heterarchical Systems Simulation Modelling Formalism: Hierarchical Decomposition Simulation Modelling Formalism: Markov Chains Simulation Modelling Formalism: Ordinary Differential Equations Simulation Modelling Formalism: Partial Differential Equations Simulation Modelling Formalism, Process-Based Simulation Modelling Formalism: Systems Dynamics

Simulation Modelling Formalism:

Transaction-Flow Techniques

Simulation Models of Autopoiesis:

Variable Structure

(d) Simulation Model Management

Databases for Simulation
Simulation: Model Base Organization
and Utilization
Simulation Model Management
Objectives and Requirements

(e) Model Behavior Generation/Simulation Techniques

Global and Regional Models
Model Behavior: Type Taxonomy,
Generation and Processing Techniques
Moving-Boundary Models: Numerical
Solution
Ordinary Differential Equation Models:
Numerical Integration of Initial-Value
Problems
Ordinary Differential Equation Models:
Symbolic Manipulation
Partial Differential Equation Models:
Numerical Solution

Random Number Generation Random Variate Generation

Sensitivity Analysis and Simulation Experimentation

Simulation and Optimization Interfacing Simulation Objectives: Experimental Frames and Validity

Simulation: Time-Advance Methods Stochastic Simulation: Experiment Design

Stochastic Simulation: Initial Transient Techniques

Stochastic Simulation: Variance-Reduction Techniques Structure/Parameter Identification by Simulation Experimentation

(f) Simulation Software and Computer Systems

Flowcharting in Computing

Cellular Space Models: Simulation
Methods
Combined Discrete and Continuous
Models: Firmware
Computer Architecture
Computer Memory Hierarchy
Computer Systems Simulation Models
Discrete-Event Simulation:
Microprocessor Architectures
Distributed Computer Systems
Distributed Model Simulation Software
Distributed System Models: Distributed
Simulation
Emulation and Microprogramming

Hybrid Analog-Digital Computers
Interactive Simulation Model and
Program Generation
Interactive Terminals
Large-Scale Software Systems:Reliability
Microprocessors
Microprogramming
Multiprogramming
Operating Systems (Computers)
Parallelism and Concurrency in
Computers

Process-Based Models: Simulation
Software
Program Compilers
Program Interpreters
Programming Languages
Programming Methodology
Semantics in Computing
Simulation and Model Oriented
Languages: Taxonomy
Simulation Modelling Support
Environments

Simulation of Activities-Based Models: Software

Simulation Program Development:
Structured Design Methodology
Simulation Software, Event-Based
Simulation Study Credibility
Simulators for Training
Simulators, Real-Time
Software Modules
Synchronization in Computing
Syntax in Computing
Systems Software
Transactions-Flow Models Simulation
Software
Utility Programs

(g) Simulation Behavior Display and Analysis

Character Representation Simulation and Graphics Simulation Models Symbolic Processing: Taxonomy Simulation Output: Statistical Analysis

(h) Simulation: Industrial Applications

Chemical Engineering: Simulation
Industrial Engineering and Operations
Research: Simulation
Mechanical System Simulation

See also: Management Systems (3.A.viii); Database Management (2.viii)

(vi) Model Simplification

Linear Continuous Model Manipulation
Software
Model Behavior: Regression Metamodel
Summarization
Model Structure Simplification
Simulation Methodology and Model
Manipulation
Simulation Models: Documentation
System Model Specifications:
Manipulation and Simplification

See also: Model Simplification for Complex Systems (1.D.iii)

B. Systems and Control Theory

(i) Fuzzy Systems

(a) Fuzzy Set Theory

Eigen Fuzzy Sets Extension Principle Fuzzy Cartesian Product Fuzzy Connectives (Intersection and Union): General Class Fuzzy Mapping on Fuzzy Sets Fuzzy Mapping on Ordinary Sets Fuzzy Membership Evaluation Fuzzy Set Theory: An Introduction Fuzzy Set Theory: Possibilities and Probabilities Fuzzy Set Theory: Review Fuzzy Sets: α-Cut Fuzzy Sets and Systems: Fundamentals Fuzzy Singletons Modus Ponens: Generalization Modus Tollens: Generalization Ordinary Mapping on Fuzzy Sets Random Sets in Fuzzy Set Theory Vagueness in Scientific Theories

(b) Fuzzy Databases and Fuzzy Calculus

Fuzzy Algebra
Fuzzy Databases
Fuzzy Databases: Retrieval Processing
Fuzzy Events
Fuzzy Integrals
Fuzzy Numbers
Fuzzy Numbers: Applications
Fuzzy Random Variables
Language Databases

(c) Possibility Theory, Fuzzy Statistics and Fuzzy Measures

Entropy Measures in Fuzzy Set Theory

Fuzzy Causes: Probability Fuzzy Events: Probability

Fuzzy Measures: Classical Approach Fuzzy Measures: Fuzzy Integral

Approach Fuzzy Probability

Fuzzy Set Theory: Possibilities and

Probabilities

Fuzzy σ-Fields in Fuzzy Measure

Theory

Measures of Fuzziness: A Survey Measures of Fuzziness: Conditions Normal Fuzzy Measures and Fuzzy

Random Measures

Parameter Estimation: Fuzzy Logic

Plausibility Measures

Possibility Distribution Functions

Possibility Distributions Possibility Measures

Probabilistic Sets

Probabilistic Sets: Distribution Function

Subjective Entropy

(d) Fuzzy Logic Controllers and Applications of Fuzzy Control

Adaptive Fuzzy Automation

Adaptive Fuzzy Control System

Adaptive Fuzzy Controller

Control Rules: Competition

Control Rules: Generation

Crisp Controller

Direct Current Series Motor: Fuzzy

Control

Direct Current Series Motor: Fuzzy

Model

Expert Fuzzy Controller

Fuzzy Control Algorithm Completeness

Fuzzy Control Language

Fuzzy Control Processes: Convergence

Fuzzy Control Systems: Linguistic

Analysis

Fuzzy Controllers: Reproducibility

Property

Fuzzy Logic Controller

Fuzzy Logic Controller: Algebraic

Fuzzy Logic Controller: Good-Mapping

Property

Fuzzy Logic Controller: Implementation

of Parameters

Fuzzy Logic Controller: Interactivity

Fuzzy Logic Controller: Self-

Improvement

Fuzzy Logic Controller: Self-

Organization

Fuzzy Logic Controller: Sensitivity Fuzzy Logic Controller: Stability Fuzzy Logic Controller: Structure Fuzzy Łukasiewicz Controller Industrial Processes: Fuzzy Logic

Controllers

Industrial Production: Fuzzy Control

Systems

Learning Fuzzy Controller Linguistic Controller

Linguistic Variables

Look-Up Tables (Decision Tables)

Manual Process Control

(e) Fuzzy Logic and Inferences

Analogical Inference

Approximate Reasoning (Fuzzy

Reasoning)

Fuzzy Algorithms

Fuzzy Conditional Inference

Fuzzy Conditional Inference:

Compositional Rules

Fuzzy Implication Operators

Fuzzy Implication Operators: A Survey

Fuzzy Logic

Fuzzy Łukasiewicz Logic

Fuzzy Reasoning Methods

Fuzzy Switching Functions

Fuzzy Switching Functions: Algebra

Many-Valued Logics

Many-Valued Logics, Algebraic

Many-Valued Logics: Applications

Multidimensional Fuzzy Implication

Neural Fuzzy Learning Strategies

(f) Fuzzy Systems and Decision Making

Brains as Fuzzy Systems

Brains: Creative Functions

Communication Theory: Fuzzy

Detection and Estimation

Composite Fuzzy Relational Equations:

Solution Algorithms

Composite Fuzzy Relations

Composite Fuzzy Relations and

Relational Equations

Computer-Assisted Medical Diagnostic

Systems: Fuzzy Methods

Computer Security Systems: Fuzzy

Computer Security Systems: Possibility

Conflict Resolution: Fuzzy-Ideal

Concepts

Defuzzification Operators

Education Concepts: Fuzzy Aspects

Fuzzification Operators

Fuzzy Automata

Fuzzy Automata: Identification

Fuzzy Catastrophes Fuzzy Discretization

Fuzzy Identification of Systems

Fuzzy Linear Bragrammi

Fuzzy Linear Programming

Fuzzy Restrictions

Fuzzy Systems: Analysis and Synthesis

Fuzzy Systems, Dynamical Fuzzy Systems: Identification Identification of Fuzzy Sets with

Random Sets

Incompatibility Principle

Optimal Control of Fuzzy Systems Optimal Fuzzy Target Control Pragmatic Fuzzy Systems

Prediction in Fuzzy Systems

Relational Assignment Equations

Stabilization Control of Fuzzy Systems

Stochastic Systems in Fuzzy Environments: Control Systems Management

(g) Fuzzy Ranking, Modelling and Optimization

Fuzzy Cardinals
Fuzzy Mathematical Programming
Problem: Resolution
Fuzzy Multicriteria Modelling
Fuzzy Ranking
Fuzzy Sets: Ordering by Fuzzy Entropy
Multicriteria Decision Problem
Operations Research: Fuzzy Set Theory
Optimal Control of Fuzzy Systems
Optimal Fuzzy Target Control
Optimization: Fuzzy Set Theory
Optimization in a Fuzzy Environment

(h) Linguistic Approximations and Expert Systems

Aggregate Planning Using Linguistic Variables

System Performance: Fuzzy Methods

Biofeedback

Brain Activity During Language Perception

Computer-Assisted Medical Diagnostic Systems: Fuzzy Methods

Computerized Electrocardiogram Diagnosis: Fuzzy Approach

Electrocardiogram Diagnosis: Fuzzy Approach Expert Fuzzy Controller

Expert Systems

Expert Systems in Medical Reasoning

Fuzzy Control Systems: Linguistic

Analysis

Information Systems

Linguistic Approximation

Linguistic Controller

Linguistic Hedges

Linguistic Models

Linguistic Probabilities

Linguistic Variables

Structural Damage Assessment: Fuzzy

Approach

Subjectivity: Human Communication

Verbal Reports Verbalization

(i) Reliability Theory and Applications

Reliability of Control Reliability of Systems

Reliability of Systems: Basic Theory

Reliability of Systems: Specific

Applications

(j) Random and Pseudo-Random Signals

Binary Random Signals and Random

Identification: Pseudo-Random Signal

Method

Maximum-Length Sequences

Power System Component Identification: Pseudo-Random Signal Method

(ii) Pattern Recognition

Character Recognition

Cluster Analysis, Nonmetric

Discriminant Analysis

Feature Selection: Fuzzy Classification

Fuzzy Partitions

Fuzzy Transformations

Industrial Vision Systems

Industrial Vision Systems for Inspection

and Manufacturing

Industrial Vision Systems: Segmentation

of Gray-Scale Images Pattern Recognition

Pattern Recognition: Decision-Theoretic

Approaches

Pattern Recognition: Syntactic Methods

Scene Analysis, Hierarchical Thinning Transformations

(iii) General Systems Theory

(a) Taxonomy of Systems

Adaptive Systems
Anticipatory Systems
Autopoiesis
Behavior Systems
Closed Systems
Data Systems
Directed Systems
Dynamic Systems

Dynamic Systems: A Survey

Effective Systems Efficient Systems

Epistemological Hierarchy of Systems

General Systems Goal-Oriented Systems Learning Systems Lindenmayer Systems

Linear Systems: General Aspects

Metasystems
Neutral Systems
Petri Nets
Self-Organizing Systems
Self-Reproducing Systems
Source Systems
State-Transition Systems
Structure Systems
Systems
Value Systems

(b) Information Aspects of Systems

Cybernetics Cybernetics: A Survey Cybernetics: History Entropy Minimax Theory Expert Systems Expert Systems in Medical Reasoning Information Laws of Systems Information Theory Information Transmission Law of Requisite Variety Maximum-Entropy Principle Possibilistic Information Pragmatic Information Semantic Information Shannon Entropy **U-Uncertainty**

(c) Methodological Issues of Systems

Design of Systems
General Systems Problem Solver
Interpretive Structure Modelling
Metamethodology of Systems
Monte Carlo Methods
Multicriteria Decision Making

Q-Analysis Reconstructability Analysis Set-Covering Problems

(d) Special Theories

Catastrophe Theory Information Theory Linear Systems: General Aspects Praxiology Similarity Stability Theory

(e) Philosophical Issues of Systems

Autology Causality Explanation Holism Prediction Reductionism Retrodiction Semiotics Teleology

(f) Computational Aspects of Systems

Artificial Intelligence Computability Computational Complexity Decidability Turing Machines

(g) General Systems Concepts

Antisymmetric Relations Chaos Complexity of Systems **Emergent Properties** Environment of a System Equivalence Relations General Systems Generalized Dependence Homomorphism of Systems Intelligence Amplification Isomorphic Systems Linear Orderings Partial Orderings Partition of a Set Past Determinancy and Finite Memory Projections Quasiorderings Relational Join Relations, Mathematical Reliability of Systems Set Covers Simplical Complexes Symmetric Relations Systems Interactions Total Relations