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PREFACE : R

Recent years have seen a great deal of progress in the field of orthogonal
polynomials, a subject closely related to many important branches of analysis.
Orthogonal polynomials are connected with trigonometric, hypergeometric,
Bessel, and elliptic functions, are related to the theory of continued fractions
and to important problems of interpolation and mechanical quadrature, and
are of occasional occurrence in the theories of differential and integral equations.
In addition, they furnish comparatively general and instructive illustrations of
_ certain situations in the theory of orthogonal systems. Recently, some of these
polynomials have been shown to be of significance in quantum mechanics and
in mathematical statistics. _ ‘

The origins of the subject are to be found in the investigation of a certain
type-of continued fractions, bearing the name of Stieltjes. Special cases of these
fractions were studied by Gauss, Jacobi, Christoffel, and Mehler, among others,
_ while more general aspects of their theory were given by Tchebichef, Heine,
Stieltjes, and 'A. Markoff. ‘

Despite the close relationship between continued fractions and the problem
of moments, and notwithstanding recent important advances in this latter
subject, continued fractions have been gradually abandoned as a starting point
for the theory of orthogonal polynomials. In their place, the orthogonal
property itself has been taken as basic, and it is this poiat of view which has been
‘adopted in the following exposition of the subject. Choosing this same basic:
property, we discuss certain special orthogonal polynomials, which have been
treated in great detail independently of the general theory, and indeed, even:
before this theory existed at all. In this connection we add the names of La-
place, Legendre, Fourier, Abel, ‘Laguerre, and Hermite to those previously
mentioned. :

As regards treatises on the subject, we note that the only systematic treat-
ment thus far given is found in J. Shohat’s monograph, Théorie Générale des
Polynomes Orthogonauz de Tchebichef, Mémorial des Sciences Mathématiques,
Paris, 1934. Limitations of space have compelled that work to be brief, and
_ consequently, it does not enter into a detailed treatment of many problems
which have been especially advanced in recent years. It has therefore seemed

. desirable to attempt a new and detailed development of the main ideas of this

field, devoting, in particular, some space to recent investigations of the distribu-
tion of the zeros, of asymptotic representations, of expansion problems, and of
‘certain questions of interpolation and mechanical quadrature. -
i In what follows, we are concerned partly with the general theory of orthogonal
_‘polynomials, and partly with the study of special classes of these polynomials.
As might be expected, we have more exhaustive results for these special classes,
and we cite as an instance the classical polynomials satisfying linear differential
m
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equations of the second order. Also, when the primary importance of these
special classes in applications is taken into account, it should not be at all sur-
prising that the present book is mainly devoted to their study, The general
‘theory, however, as developed in Chapters XII and XIII, doubtless represents
the most important progress made in recent years,

.In the present work, no claim is made for completeness of treatment On the
contrary, the aim has purposely been to make the material suggestlve rather
than exlxaust1ve An attempt has been made to indicate the main and charac—
‘teristic methods and to point out the relation of these to some general ideas in
modern analysis. As a rule, preference has been given to those topws to which
'we_were able to make some new, though modest, contnbutlons, or which we
could present in a new setting. Thus the book contalns a number of results not
previously published, some of which orrgmated several years ago. For mstance,,
we have included a discussion of the Cesaro summablhty of the Jacobi series a,t‘
the end-points of the orthogonality interval (the method used here is of interest
even in the classical case of Legendre series), Further, a new and simpler ap- -
proach has been. given to 8.. Bernstein’s asymptotic formula, for orthogona.l

polynomials. ‘We also refer to certain details of minor 1mp0rtanc-e, such as:
simplifications and additions in the asymptotlc 1nvest1gat10n of Jacobl a.nd
Laguerre polynomials and in the dlscussmn of the expansions in terms of' these
polynomials; the discussion of the cases in which the Jacobi dﬁerentlal equatlon
has only polynomial solutlons the evaluation of the number of zeros of genera.I :
Jacobi polynommlsmthe intervals [— o, — 1], [— 1, + 1], [+ 1, 4 «]; a.new
proof of the Heine-Stieltjes theorem on lmear dlﬁ'erentlal equations i of the second
order with polynomial coefficients and polynomlal solutlons, and so. O 1 s

In general, we have preferred to discuss problems which may be stated and
treated srmply, and which could be presented in a more or less complete form.
This was the main reason for devotmg no space to the extremely 1nterest1ng
arithmetic and algebralc properties of orthogonal polynomlals, such as, for .
instance, the recent important investigations of I. Schur concerning the irre- .
ducibility and related properties of Laguerre and Hermite polynomlals Fur-
thermore,; we have attached great unportance to the idea of replacing incomplete
and overlapping theorems, scattered in the. literature, by complete Tesults
involving only intrinsic or necessary restrictions, We have also tried to exploxt
a8 far as seemed to. be at all possible, definite methods, such as, for mstance,
Sturm’s methods in differential equations (see §§6.3, 6.31, 6.32, 6.83).

. A complete treatment of Legendre polynomials was not feasrble and probably
not desirable, in the framework of the general theory Besudes, there are al-
ready complete treatises on sphenca.l and other harmonics.'!  We have selected
-and considered only those properties of Legendre polynornmls Whl(‘h are the
starting points of generalizations to ultra.spherlcal Jacobi, or to more general
polyriomials. Another subject whlch could not be 1ncluded was StxeltJes

i ‘ For :i,nsta.rlce,‘_E. W. Holgson 1. (see bibliography). ,
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problem of moments, which has been omitted in spite of its great interest;
- for this subject would have necessitated the development of a complicated
apparatus of results and methods. Orthogonal polynomials of more than one
variable also have not been treated.’

The book is based on a course given at Washington University during the
academic year 1935-1936. Acquaintance with the general ideas and methods
of the theory of functions of real and complex variables is naturally required.
Occasionally, Stieltjes-Lebesgue and Lebesgue integrals are considered. In the
greater part of the book, however, these integrals have been avoided, and, except
in a very few places, no detailed properties of them were used.

The problems at the end of this book are, with few exceptions, not new, and
they are not interconnected as are, for instance, those in Pélya-Szegd’s Aufgaben
und Lehrsdtze. They are more or less supplementary in character and serve as :
illustrations and exercises; they sometimes differ widely from one another both
as to subject and method. o

The list of references is not complete; it contains only original memoirs, a few
text books of primary importance, and monographs to which references are made -
in the text.

For the suggestion of preparing a book on orthogonal polynomials for the
Colloquium Publications, I am indebted to Professor J. D. Tamarkin, who has
also participated in the present work by offering a great number of valuable
suggestions. It is with the greatest gratitude that I mention his friendly
interest. :

I have also received valuable advice from my friends and teachers L. Fejér
(Budapest), and G. Pélya (Zirich). My colleagues P. Erdoés (Manchester);
G. Griinwald (Budapest), W. H. Roever (St. Louis), A. Ross (St. Louis), J.

Shohat (Philadelphia), and P. Turén (Budapest) gave generously and unstint- ‘

ingly of their time. F. A. Butter, Jr. (at present in Los Angeles) collaborated
with me in the preparation of the manuscript. . This last aid was made possible
through a grant from the Rockefeller Research Fund of Washington University
(1936-1937). My student L. H. Kanter also rendered valuable assistance in
. the preparation of the manuscript.

My gratitude for the encouragement and help of these friends, colleagues,and -
institutions can hardly be measured by any formal acknowledgment. Lastly,
I wish to express to the American Mathematical Society my great appreciation -
fer the inclusion of the present book in its Colloquium Series.

G_-SzEGO

WasHINGTON UNIVERSITY, 1938.

2 Cf. the bibliography in Jackson 8, p. 423.
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CHAPTER I
PRELIMINARIES

1.1. Notation

Numbers in bold face type, like 1, refer to the bibliography at the end of the
book. The system of section numbering used is Peano’s decimal system, and
the numeration of formulas starts anew in each section. Thus, reference to §9.5
and (9.5.2) ‘means section 9.5 in Chapter IX and formula (9.5.2) in the same
section, respectively. A similar numeration has been used for the theorems

We use the symbol: 8,» = 0 or 1, according as n ¥ m, or n = m.

The closed real interval ¢ = z = b (a and b finite) will be denoted by |a, b). .
The same symbol is used if either a or b is infinite or if both are; in this case the
equality sign is excluded.

We often write for a real =

(1.1.1) sgnz = — 1,0, + 1,

according as z is negative, zero, or positive; more generally, for arbitrary com-
plex z, z = 0, we write

1.1.2) sgnz = [z|™" 2

The symbol & denotes the conjugate complex value, 9(z) the real part, and
J(z) the imaginary part of the complex number z: , ' )

If two sequences z, and w, of complex numbers have the property that wa = 0
and z,/w, — 1 as n — ©, we write 2, & W, . 1f z, and w, are complex, w, # 0,
and the sequence |z, |/| wx | has finite positive limits of indetermination, we -
Write 2, ~ Wn . : '

Occasionally we make use of the notation

(1.1.3) za = 0(a,), 20 = o(aq)

if a, > 0, to state that z./a. is bounded, or tends to 0, respectively, as n — ©.
A similar notation is used for a passage of limit other than n — .

A function f(x) is called increasing (strictly inereasing) if 2, < . implies
f(@) < f(xs); it is called non-decreasing if z, < x» implies f{z:) = f(xs). -An
analogous terminology will be used for decreasing { unctions.

Let p = 1, and let a(z) be a non decreasing function in [a, b] which is not
constant. The class of functions f{x) which are measurable with respect to
a(z) and for which the Stielties-Lebesgue integral [ f(®) |? de(z) exists (see
§1.4) is called L2(a, b). In case x(x) = z we use the notation L?(a, b); in case
p = 1, a(%) arbitrary, the notation La.(e, b) is used.” If f(x) and g(z) belong to
the class LZ(a, b), the same is true for f(z) + g(z). (Cf. Kaczmarz-Steinhaus 1,
pp. 10-11.) ' . i
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1.11. Inequalities
(1) Cauchy’s inequality. Let {a,}, {b},» = 1,2, .., n, be two systems of
complex numbers. Then M

E:tuby

y==1

(1.11.1)

siM$in

The equahty sign holds if and only 1f two numbers A, g, not both zero, exist -

such that Aa, + ub, = 0,7 =1, 2, .
© (2) Schwarz’s inequality. . Let I (z) and g(x) be two functlons of class 12 (a b)
Then j'(r)g(x) i3 of class Lq(a, b), and

(1:11-‘2) I/ f(@ﬂ(x) da(m)l' = / | f(z) |* da(:z)/ g(z) |” dalz) .

- (3) Inequality for. tke‘ arithmetic and geometric méan. If f(x) > 0, we ha.xlre
b b

/ f(x) do(z) / log f(z) dal(z)

-ab—_-- :é exp : b
[ deta [ datw

provided all integréls exist, and [%da(z) > 0. (Cf. Hardy-Littlewood-Pélya
1, pp. 137-138.) )
(4) Abel's transformation and Abel’s inequality. From

fogo +f191+ sy +fngnb 3
= (fo _,"fl)GO + (fl ""fz)Gl + £ + (fn-—l. - fn)Gn—-l +'fnGn’

(1.11.3)

‘(‘1.11.4)

where . ;
(1.11.5) Gv=go+gl+“'+guy V=0;1127"')I”)

we obtain, assuming fo Z fi 2 --- Zfa 20,and |G, | S G, v =0,1, .- ,n,
the inequality ¥ ‘

(1.11.6) [fogo + figr + -+ + fagn | SN G

(5) Second Mean-valw theorem of the integral calculus. Let f(x) z 0 be a
non-increasing function, and let g(x) be continuous, ¢ < z < b, a a.nd b finite.
Then

; b ' £ : |
(1.11.7) v / J@)g(x) dz = f(a + 0) /: g(z) dz, a<t<b

1.12. Polynomials and trigonometric polynomials

. We shall consider polynomla.ls in x of the form
(1 12, 1) , p(x) = co+ e + e’ + -+ - + cmz”,
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with arbitrary complex coefficients ¢, €1, C2, =<+ 3 Cm. Here m is called the ‘

degree; and if ¢ # 0, the precise degree of p(z). In what follows an arbitrary
polynomial of degree m will be denoted by mm. If po(2), ;1(2), - -+ pn(x) are
arbitrary polynomials such that p.(z) bas the precise degree m, every , ean be
represented as a linear combination of these polynomials with coefficients which
are uniquely determined. i

A trigonometric polynomial in 6 of degree m has the form

(1122)  g(6) = a0+ a100s 0 + bysin 0+ -+ + G cOSmO + b sinmd,

with arbitrary complex coefficients. Here m is again called the degree of g(6);
m is the precise degree if | &m | + | bm | > 0. According as all the b, or all the a,
vanish, g(6) is referred to as a cosine or a sine polynomial.

The functions cos m@ and sin (m -+ 1)8/sin 6 are polynomials in cos 8§ = z of
the precise degree m and are called Tchebichef polynomials of the first and second
kind, respectively. These polynomials play a fundamental réle in subsequent
considerations. Setting ' ;

gin (m.+ 1)6- '

(1.12.3) ¢eosmf = T'n(cos8) = Tw(z), =3 = Un (cos8 0) = Un(2),

we see that any cosine polynomial of degree m is a polynomial of the same degree
in cos 8 = z, and conversely. Any sine polynomial of degree m, divided by
sin 6, furnishes a cosine polynomial of degree m — 1. Thus, a sine polynomial
can be represented as the product of sin 6 = (1 — )% by a polynomial in
cos 6 = x.

The polynomials (1.12.3) are special cases of the so-called Jacobi polynomials

(cf. Chapter IV). They contain only even or only odd powers of z according
ag in is even or odd. Thus cos (m + %)6/cos (8/2) and sin (m + 3)6/sin(6/2)

are cosine polynomials in-@ of degree m; they are also connected with the

Jacobi polynomials (see (4.1.8)). _
We define the “‘reciprocal”’ polynomial of (1.12.1) by

(1.12.4) o*(2) = 25 = &m + Emaz + Ema® + oo + Eoz™.

. If the zeros of p(z) are z;, #2, - - - , Tm, those of p*(z) are ¥, z¥, - - - , Tm , Where
z* = &, is the point which is obtained from z, by inversion with respect to the
unit circle | z | = 1 in the complex z-plane. The zeros must be counted accord-
ing to their multiplicity, and 0* = o, o* = 0; © as a zero of order k means

. that the coefficients of the k highest powers vanish.

1.2. Fejér’s theorem concerning non-negative trigonometric polynomials

TuroreMm 1.2.1. Let g(8) be a trigonometric polynomsal with real coefficients

- which 1s non-negative for all real values of 8. Then there exists a polynomial p(2)

of the same degree as g(0) such that g(6) = | p(2) |*, where z = ¢®. Conversely, if

z = ¢, the expression | p(2) |* always represents a non-negative trigonometric poly-
noméial in 0 of the same degree as the polynomial p(2).



e (1.21.2) cos mé,

i PRELIMINARIES (1]

- See Fejér 6. The second part of the sta.teinent is obvious. The first part is
easily derived from (1.12.2) by introducing 2* + z™* for 2 cos %6 and 2* — z7*
for 27sin k6. We then find g(6) = 27 ™G(z), where G(z) is a ms. for which G*(z) =
G(z). Now those zeros of G(z) which are different from 0 and o, and which
do not have the absolute value 1, can be combined in pairs of the form 20,28,
0 < |z, | < 1, where z¥ has a meaning similar to that i m §1.12. Furthermore,
every real zero 6y of g(6) is of even multiplicity, and ¢ is a zero of G(z) of the
same multiplicity. Thus

@21 ... G =t H(z'—z,.)(z—z:!‘)H(z—i'u)2
O<{z,.l<1,, IHl=1; x+o+r=m
Since g(0) = [9(0) | = [G(2) |,z = ¢, and |2 — 54| = | 2, | [ 2 — 22|, 2 = ",

the theorem is established.

The representation in question is, however, not unique. Indeed if o denotes
"an arbitrary zero of p(2), the polynomial p(z) (1 — a&z)/(z — «) furnishes another
representation. Hence assuming g(8) # 0, we can gradually remove all the
zeros from | z | < 1 and obtain the following theorem:

THEOREM 1.2.2. Let g{6) satisfy the condition of Theorem 1.2.1 and g(6) $# 0.
Then a representation g(0) = | h(e™) |* exists such that h(z) is a polynomial of
the same degree as g(6), with h(z) = 04n |z | < 1, and h(0) > 0. This polynomial
s untquely determined. If g(6) is a cosine polynomzal h(z).is a polynomial with
real coefficients.

'A generalization of this normalized representation (its extension to a certain
class of non-negative functions g(6)) is of great importance in the discussion of
the asymptotic behavior of orthogonal polynomials. (See Chapters X-XIII. )

1.21. Theorem of Lukécs concerning non-negative polynomiaIs ’

(1) TeEorem 1.21.1 (Theorem of Luk4cs). Let p(z) be @ 7 non—negatwe in
[—1;, +1].. Then p(z) can be represented in the form i

(‘) {{A(x)} + 1 - :z:){B(x)} if m 18 even,
X =
1+ x){C’(a:)} £ - :c){D(:c)} if m zsodd

Here A(z), B(z), C(z), and D(z) are real polynomials such that the degrees of ‘the
single terms on the right-hand side do not exceed m.

(1.21.1)7

The proof can be based on Theorem 1.2.2. - We have
p(cos 6) = | h(e”) |" = | ™™ h(e”) I,
".‘where h(z) is a #,, with real coeﬁments Now the expressions

sin (m + 1)0 cos (m + 3)8 sin (m + 1})0
sinf . ' cos (8/2) ’ sin (8/2) -
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are all 7., in cos @ (see §1.12), so that A
‘_.~ S Af(cos 8) + 7 sin 8 B(cos 6) " if miseven,
<€ e = ‘
2t cos (8/2) C(cos 6) + 2! sin (6/2)D(cos 6) if m is odd,

where the degrees of A(z), B(z), C(z), D(x) are, respectively, m/2, m/2 — 1,
(m — 1)/2, (m — 1)/2. '
(2) The following theorem has a simpler character:

TeEOREM 1.21.2. Every polynomial in x, which is non-negative for all real
values of z, can be represented in the form {A(@)}* + {B(z)}’. Every poly-
nomtal which is mon-negative for x = 0, can be represented in the form
{A@} + {B@} + 2l{C@)}* + {D@)}’]. Here A(z), B(z), C(2); D(x) are
all real polynomials, and the degree of each term does not exceed the degree of the
given polynomial.

These representations can also be written in the form |P(z)|* and
| P(z) | 4+ = | Q(z) |, respectively, where P(z) and Q(z) are polynomials with
complex coefficients; for the degrees the same remark holds as before.

In connection with this section see Pélya-Szego 1, vol. 2, pp. 82, 275, 276,
problems 44, 45, 47. ‘

1.22. Theorems 6f S. Bernsteix{

TaEOREM 1.22.1. I f g(6) is a trigbnometric polynomial of degree m satisfying
the condition | g(8) | < 1, 0 arbitrary and real, then | g’(6) | < m.

This theorem is due to S. Bernstein: (Cf. M. Riesz 1.) The upper bound m
cannot be replaced by a smaller one as is readily seen by taking g(8) = cos mo.
The following special case is worthy of notice:

Tumorem 1.22.2. Let » p(z) be an larb"itmry Tm Salisfying the condition
| p(2) | S 1, where z is complex, and | z| < 1;then | p'(2) | = m, |2]| = 1.

With regard to this theorem see also Szdsz-1, pp. 516-517. Finally we
mention the following consequence of Theorem 1. 22.1:

. TeeorEM 1.22.3. Let p(x) be a wn satisfying the condition Ip(x)l < 1lin
—1 =z = 4+ 1. Then

lF@ | = a—2)"m
. This follows by applying Theorem 1.22.1 to g(6) = p(cos 6).
1.3'. Approximation by' polynomials

(1) TeEorEM 1.3.1 (Theorem of Weierstrass). A function, continuous in a
finite closed interval, can be. approzimated with a preassigned.accuracy by poly-
nomials. A function of a real variable which is continuous and has the period 2,
can be approximated by trigonometric polynomzials.
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For information concerning this theorem we refer to Jackson 4. In the second -
part of the theorem let the function in question be even (odd); then the approxi-
mating trigonometric polynomials can be chosen as cosine (sine) polynomials.

TuroreM 1.3.2. Let w(3) be the modulus of continuity of a given fﬁnctz’on
f(x), continuous in the finite interval [a, b], ‘

(1.3.1) - (@) = max |f@) = f@) | ~  ifla —a"| S8

Then for each m we can find a polynomial p(x) of degree m, such that in the given
interval of length 1 we have ;

(1.3.2) | f(z) — p(z) | < Aw(l/m).

In the case of a periodic function f(6) with period 2, a tngonometrzc polynomzal
g(ﬂ) of degree m can be found such that

(133) | £(6) — g(6) | < Bw(2x/m).
Here A and B are absolute constanis.
In this connection see Jackson 4, pp. 7, 15.

Tueorem 1.3.3. Let f(x) have a continuous derivative of order p in the finile
interval [a, b), p = 1, and let wy(8) be the modulus of continuity of f “W(z). Then
a polynomz_al p(z) of degree m + u exists such that

1@ — o@) | < CUmYPal/m), ;
|f'(x) — (@) | < C’(l/m)"‘1 u(l/m), 1 =b—a.
Here C is a constant depending only on u.

(1.3.4)

Analogous 1nequa11t1es can be obtamed for a,ll the derlva.tlves f(=), f (z),

¥ (@).
I‘or the first inequality see Jackson 4 (p 18, Theorem VIII). To prove the
second inequality we first establish the following lemma: o

Lemma. Let f(0) be a function of pertod 2r satisfying the'Lz'pschitz condition
135 C1f8) — f(8) | < N6 — 6], i
where \ is a positive constant. Then there exist for each m irigonometric poly-
nomaals g(6).of degree m such that

: ) . D'\ ; 7
(13.6) 70) — g@ | <22, |g®) | < D,

where D’ and D"’ are absolute constants.

For the first inequality (1.3.6) see Jackson 4, pp. 2-6. When we use his
notation aind argument, it suffices to show that | )\"II »(0) | is less than an a,bso-
lute constant. But
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(137) h®=-§£ﬂMH%0fthw
z/2 /2 . 3 o

' / u-I'F,'..‘(u)ldu=4/.' u|Snmuld sm.mul

EON T 0 m sin % dumsmu

i : d sin mu
(13.8) | = 0Q) / S t

+0(1)/ sin mu smmu‘d

since u/sin u is analytic in~ the closed interval [0, ,-n-/2] On writing mu = T,

o(m™) f

Now we use (cf. loc, clt.) hm = O(m).

The analogue of the lemma for polynomials can be derived in the usual way.
" Then in the upper bound of the first inequality of (1.3.6) the factor b — a = I
appears. It is convenient to transform the intervala < z < binto —3i=sy=s3%
(instead of —1 < y < 1, cf. Jackson, loc. cit., p. 14), deﬁmng the functlon in
[-1, —3]and [4, 1] by a constant

In order to prove Theorem 1.3.3, we apply Theorem VIII of Jackson (loc.
cit., p. 18) tof’(x). (For this argument cf. loc. cit., p. 16.) Thus

@) - @) | < K(/m)* wu(l/m),
where g¢(z) is a proper 7miu—1. Applying the lemma to f(:c) - J3 q(t)dt
which satisfies a Lipschitz condition with
A = K(Q/m) wu(l/m),

we obtain & w.. , say ¢(z), such that

ﬂﬂ;ﬁlma~a@

If we write [ q(t) dt + o(z) = p(z), the statement is established.
The constants K, K’, K” in the last three inequalities depend only on u.

(2) TaeoreM 1.3.4 (Theorem of Runge-Walsh). Let f(z) be an analytic
function regular in the interior of a Jordan curve C and confinuous in the closed
domain bounded by C. Then f(x) can be approximated with an arbitrary accuracy
by polynomials.

See Walsh 1, p‘ 36. This 'theorem has been proved b)} Runge in case f(x)
is analytic on C; the general case is due to Walsh.
We need also a supplement to the former theorem, due to Walsh (1,

sin z

[d + O(m“’)f dx = O(m DR

< K'(/m)ol/m), |o'@)| < K'G/m) " w,0/m).
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pp. 75-76). Let C be again a Jordan curve in the complex z-plane. Let
z = ¢(2) be the map function carrying over the exterior of C into |z | > 1
and preserving * = z = «. Then the circles |z | = R, B > 1, correspond to
certain curves Cg, called level curves. We have -

TueoreMm 1.3.5. Let f(x) be analytic within and on C, ana let Cx be the largest
level curve in the interior of whick f(x) s regular. Then to an arbitrary r,
0 < r < R, there corresponds a constant M > 0 such that, for each m, a polynomzal
pul(T) uf degree m exists satisfying the inequality

(1.3.9) e 5 ‘ . (@) = pm(2) | < Mr™™, z on C.

This holds also if C is a Jordan are, for example, the interval —1 <z < + 1.
In the latter case Cr is an ellipse with foci at =1, and R is the sum of the semi-
axes (§1.9).

1.4. Orthogonality; weight function; vectors in function Spaces

(1) Let a(x) be a non-decreasing function in [a, b] which is not constant. ~If
a = —x (orb = 4+ »), we require that a(—) = lim,,_« a(z) (a(+*) =
lim,_, 1« a(z)) should be finite. The scalar product of two real funections f(z)
and g(z), where z ranges over the real interval [a, b, is defined by the Stieltjes-
Lebesgue integral

b
(1.41) mm=[mmmuw,

where we assume that f(z)q(z) is of the class Lq.(a, b).. This is certainly the
case if f(z) and g(z) are both continuous, or both of bounded variation, and
[a, b] is a finite interval. For a fixed function «(x) the orthogonality with
respect to the “distribution” da(x) may-be defined by the relation

(1.4.2) (f,9) = 0.

We shall also use the expression “f(z) is orthogonal to g(x).”
If we permit f(z) and g(z) to be complex functions in general, definition
(1.4.1) must be modified to read

(1.43) mw=[mmamm

With this change in the definition of (f, ¢), we retain (1.4.2) as the deﬁmtlon of
orthogonality.

[For the definition of Stieltjes-Lebesgue integrals see, for instance, Hildebrandt
1, pp. 185-194. This definition, given originally for a monotonic a(z), can
easily be extended to the case where a(z) is of bounded variation. Hildebrandt
1, pp. 177-178, may also be consulted for the definition of Riemann-Stieltjes.
integrals. :
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In what follows we sometimes need the formula for integration by parts:

b b
(1.4.4) / f(z) da(z) + f a(z) df(x) = f(B)a(d) — f(a)a(a),

where @ and b are finite, a(z) is of bounded variation, and f(z) is contmuous
The integrals are taken as Riemann-Stieltjes integrals.

The expression ‘“distribution” used above arises from the classical inter-
pretation of da(r) as a continuous or discontinuous mass distribution in the
‘interval [a, b], the mass contributed by the interval [xl, zs] of [a, b] being
a(®) — a(r).]

(2) If afzx) is abqolutely continuous, the sealar product (1.4. 1) reduces to

(145) (Frg) = / gz dz,

where the integral is assumed to ex1st in Lebesgue s sense. Here w(x) s a non-
negative function measurable in Lebesque’s sense for which 2 w) dz > 0.
We shall call w(z) the weight function, referring to a weight function of, or on,
the given interval. Instead of “Welght function” the-term ‘“norm function”
is sometimes used in the literature.® In the case of a distribution w(z) dz the
total mass corresponding to the interval [z1, x2] is obviously [3* w(z) d=.
In what follows we refer to distributions of the form da(z) as distributions of
Stieltjes type.

" We use the same concept.of distribution and weight function on a-curve or on
an arc in the complex plane, for example, on the unit circle. Then we replace
the variable x by the real parameter which is used for the definition of the curve
or arc in question. (See Chapters XI and XVI.)

(3) Let da(z), or w(z) dr, a < x < b, be a fixed distribution, and consider a
space of ‘““vectors” defined by the set of real functions f(z) which belong to the -
class Li(a, b). The scalar product of two vectors (functions) f(z) and g(z) is
. defined by (1.4.1) and the length (magnitude, norm) of a vector f(z) by || f || =
- (f, N Vectors (functions) with || f|| = 0 are called zero-vectors (zero-func-
tions); veetors (functions) with ||f|| = 1 are said to be normalized. When
f(z) is not a zero-function, \f(x) will be normalized provided A > 0 is a proper
constant, uniquely determined save possibly for sign. = If the functions a(z) and
w(z) satisfy the conditions mentioned in (1) and (2), there exist functions of
positive length for both cases. In the second case f(z) is a zero-function if and
only if {f(z)}’w(z), or what amounts to the same thing, f(z)w(x), vanishes
everywhere in [a, b] except on a set of measure zero. If w(z) and f(z) are
integrable in Riemann’s sense, f(z) is a zero-function provided f(z)w(z) vanishes
at every point of continuity.

We note the inequality of Schwarz (ef. (1.11.2))

(1.4.6) Nigll < Hrilllgll,

’Some correspondmg German and French terms are: Belegungsfunktion, Gewichts-
funktion, fonction caractéristique (Stekloff), poids (S. Bernstein).
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the equality sign holding if and only if M) + pg(z) is a zero-function with
A and u proper constants not both zero. .

A finite set of functions fo(z), fi(x), - - , fi(z) is said to be linearly inde~
pendent if the equation ' ‘

I Mfo@) + Mfi@) + -+ - + Afu(2) || = 0

can be true only for
) )\o=kl=...=)\l=o_

' Evidently no zero-function can be contained in such a system. An enumerable,
set of functions (I = «) is called linearly independent if the preceding condi-

tion is satisfied for every finite subset of the given set.
The extension of these considerations to complex vector spaces is.not difficult.
The scalar product is then defined as in (1.4.3). , ‘
Concerning the axiomatic foundation of these concepts see Stone 1, Chapter 1.

‘ 1.5. Closure; integral approximations :
(1) DerviTioN. Letp 2 1, and let a(z) be a non-decreasing function in [a, b]
which is not constant.® Let the functions ' : Haieiat s
(151) fu(ﬂ)), fl(x): f2(x)’ JEY vy fﬂ(z)r £

be of the class L2(a, b). The system (1.5.1) 18 called closed in L% (a, b) if for eb_erjj‘
f(z) of Li(a, b) and for every e > Oa function of the form 3 i

(1.5.2) . = k(z) = cofo(x) + afitx) + --- + an(x) i
exists such that . ‘ L o : ‘
(153) [ 176 ko) P date) <«

With regard to this definition see Kaczmarz-Steinhaus 1, p.49. These authors

use the term ‘‘Abgeschlossenheit” for “closure.”

(2) TueoreM 1.5.1. . Let p.and o(x) have the same meaning as in the prévioﬁs
definition, and let the function f(z)be of the class Lg(a, b), a and b finite. Then
for every € > 0 a continuous function F(z) can be determined such that

(1.5.4) [ 1f@) = F(z) P da(z) < e

For a Riemann*—integrable function with a(z) = z, this follows by a well-

known argument from the definition of the integral.. In the general case, it.is-

convenient to use the method of W. H. Young of approximating Stieltjes-
Lebesgue integrals. (See Hildebrandt 1, p, 190.)
Applying Weierstrass’ theorem, we obtain the following:

“+ See the remark st the Beﬁihning of §1.4 (1)

b e e e e R s o
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" TasoreM 1.5.2.  Let p, a, b, a(x), f(z) satisfy the condztwns of Theorem 1 5 1
For every ¢ > 0 there exzsts a ‘polynomial p(x) such that '

(1.5.5) ' / If(:z;) — p(x) |’p da(x) <e.

" This means the closure of the system , _
(1.58) - < ~ ", a=012 ‘e
in the class L5 (a, b). In what follows, we shall use in particular the cases p = 1
and p = 2. _ ,

An analogous statement holds for the “mean approx1mat10n” of f(z) by

trigonometric. polynomials;, which is equlvalent to the property-of closure. of
-the:system . : : - : ;

1.5.7) ‘1, cos 7, sin 7, cos 2z, sin 2z, - - - , cos nz, sin N, - .

in LE(—m, +m). :
(3) A more precise form of Theorem 1. 5 2is often useful.

TuporeM 1.5.3. Let p, a, b, a(z), f(z) satisfy the conditions of Theorem 1.5.1
and let f(x) be real-valued. Then we can find a polynomial p(z) which satzsﬁes
-(1.5.5) and is such that p(:c) remains between, the. upper and. lower bounds of f(:c)

We refer also to the followmg property of Rlemann-Stlelt]es integrals Whlch
plays a role in Chapter X. o

- THEOREM 1.5.4.  Let the real-valued function f(z) be bounded mn. [a, bl, a and b
- _ﬁmte, a(x) non—decreasmg, and let the Rzemann-Stwlt]es mtegral 12 (:1:) da(:c)
exist. For every e > 0 there exzst polynomials p(:l:) and P(:z;) such that

(158 i) —¢ < o) S f0) S PE) S wup 1) e,
and " o
ase ] (P(z) — p(2)} daz) < e

See (for a(z) = x) Pélya-Szegé 1, vol. 1, pp. 65, 228, problem 137

Simildr statements hold for approximations by trigonometric” polynomials.
If f(z) is an even function, —7.< z £ -+, the approximating tngonometnc
rpolynomla.ls can be chosen as cosine polynomials.

*'1.6. Linear functmnal operatmns .

(1) Let 1(f) be an operatlon which makes a number U(f) correspond to ;
every function f(a:), continuous in the finite interval [a, b]. This opera.tlon is
called additive if . e . ; R ;

(1.6.1) U(erfi + cafe) = all(fy) + cﬂl(f,) SHY R g

.



