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EARTHQUAKE ANALYSIS OF COUPLED SHEAR WALL BUILDINGS

by

T SrichatrapimukI and Anil K. ChopraII

SUMMARY

An efficient technique especially suited for computer analysis of cou-
pled shear wall buildings is outlined. Application of the technique to
analysis of earthquake-damaged buildings is demonstrated.

INTRODUCTION

Coupled shear wall buildings have usually been analyzed by computer
programs based on standard methods of building frame analysis. These
analysis methods, in determining responses to horizontal ground motions,
neglect inertia forces in vertical and rotational degrees of freedom.

By static condensation of these degrees of freedom, the dynamic equations
are formulated in terms of lateral displacement and the problem size is
greatly reduced. However, such a formulation is generally inappropriate
for coupled shear wall buildings because vertical inertia effects of walls
can be significant in the dynamics of such structures.

Because the stiffness, strength, and stahility of coupled shear wall
buildings is largely due to the walls, they should be designed to remain
essentially undaméged in the event of an earthquake. The benefits of
energy dissipation through inelastic action can be provided by yielding of
the coupling beams. Therefore, this investigation assumes that the walls
are linearly elastic, thus confining yielding to the coupling beams.

The objectives of this paper, which summarizes some results from the
complete report! on this study, are: (1) to present an efficient technique
especially suited for computer analysis of coupled shear walls; and (2) to
demonstrate application of the technique to analysis of earthquake-damaged
buildings. )

OUTLINE OF ANALYTICAL PROCEDURE

The end shear wall of the building shown in Fig. 1 may be idealized as
the structural assemblage shown in Fig. 2, with three wide-column lines
(located at the respective neutral axes of the walls), and beams at every
floor level coupling adjacent walls. The corner spandrel beams may be
neglected; the wall-beam panel zone is idealized by rigid links.

Coupling beams in coupled shear wall buildings are usually deep and
subJect to high shear, résulting in shear cracking, normally accompanied
by yielding of stirrups and flexural reinforcement.® Shear cracks and
subsequent yielding are not localized at end sections of beams, but are

I Faculty of Engineering, Chieng Mai Univ., Chieng Mai, Thailand;
formerly Graduate Student, Univ. of Calif., Berkeley
II Prof. of Civil Engineering, Univ. of Calif., Berkeley.



spread over a substantial portion of the span. Therefore, instead of using
the end sectional moment capacities, Myl or Myg, to signify a change in
beam stiffness - as is done with flexural beams - the shear P_ = (MKl + Myz)/s,
which directly reflects nonlinearities due to diagonal shear Xracki g or
stirrup yielding, is used to decide whether or not a change in stiffness
has occurred. A bilinear hysteretic force-deformation relation is assumed
for coupling beams, controlled by a bilinear shear-average end rotation
relation (Fig. 3a) which can be obtained from laboratory experiments.2

This model implies simultaneous changes in stiffness in the moment-rotation
relation at both ends of the beam, reflecting nonlinear effects distributed
throaghout the beam span, not just at the ends (Fig. 3b).

By considering bending and axial deformations in walls; bending, axial,
and shear deformations in coupling beams; including inertia .forces associated
with lateral as well as vertical motions; and using variational principles,
the equations of motion were first formulated in the nodal point degrees
of freedom (DOF): vertical, horizontal, and rotational displacements at
each beam-wall (wide column) joint in Fig. 2. The number of these equa-
tions increases rapidly as the number of walls and stories increase and
“heir solution requires large computational effort.

In Fig. L, .the first 10 natural vibration mode shapes computed for the
McKinley Building’ are compared to the vibration mode shapes of the indi-
vidual walls of the building. The general similarity of the two sets of
mode shepes suggests that displacements of the structure may be effectively
expressed as a linear combination of the natural mode shapes of vibration
of individual walls. Thus, the displacements at the nodal points on the
Jth wall are expressed as a linear combination of the first few natural mode
shapes of the jth wall, considered as an individual cantilever. Local
plastic rotation at the base of a wall may be considered by including the
associated rigid body displacement of the structure as an additional shape
"unction. The equations of motion are transformed to the associated gen-

ralized coordinates. If a small number of generalized coordinates suffice
> predict response accurately, the number of equations and the computational
ffort would be reduced considerably, as discussed in the next section.

Not only does the numerical step-by-step integration of the reduced
ystem of equations require considerebly less computational effort than
loes the original system, but a larger time step may be used in the inte-
zration, because the higher vibration modes, having very short vibration
veriods and contributing negligibly to structural response, are eliminated
by the transformation to generalized coordinates.

EVALUATION OF REDUCTION TECHNIQUE
. ‘

The simple idealization presented in Ref. 3 for the McKinley Building
(Fig. 1) was employed to evaluate the effectiveness of the above-described
technique for reducing the number of DOF. Coupling beams were assumed to
span the two end walls and the middle pier was ignored. A reduced system of
~quations is designated by HypV,, where m and n denote the number of modes
»f lateral (horizontal) and longitudinal (vertical) vibration, respectively,
of each wall included in the analysis. The natural frequencies and mode
shapes of the coupled shear wall system, modal stress resultants, and the
nonlinear response of the system are computed from the original system



("exact" analysis)of equatiohs in nodel point coordinates, and from the
reduced system of equations in generalized coordinates.

The first six natural frequencies and mode shapes of the structure-
were ‘satisfactorily reproduced by the H,V, system, whereas the first nine
modes were more accurately reproduced by the H6V system (Fig. 5). Because
the more significant displacements in the lower mgdes of vibration of the
structure are in the lateral direction, it is effective to include a larger
proportion of lateral vibration modes of the walls.

Although the deflected shape of the first aﬂtisymmetrical mode was
very accurately reproduced by solving the eigenvalue problem for the H16v8
reduced system, to within 2%, predictions of the associated shear and
bending moments in the walls were extremely inaccurate (Fig. T). Stress
resultants were inaccurate because the moments in the walls associated with
the deformations in vibration mddes of individual walls vary gradually along
the height, whereas their actual distribution is discontinuous due to the
moments at the ends of coupling beams. However, the predicted wall moment
smoothly averaged the discontinuity in moments at the beam level. Shear in
coupling beams, however, was predicted accurately (Fig. T).

The stress resultants for the walls obtained by analyzing the reduced
system were corrected by distributing, as shown in Fig. 6, the beam end-
moments to the wall above and below each beam-wall joint. A correction was
also necessary at the base of the structure. Shear forces in the weall are
then correspondingly adjusted to equilibrate corrected bending moments. By
applying the above adjustment procedure, the corrected bending moments and
shears obtained from analyzing the H6V reduced system -- a much less refined
system than the Hy¢Vg one —- satisfactgrily agreed with the "exact" values
(Fig. T). The H6V Feduced system, with this adjustment, also satisfactor-
ily predicts the sgress resultants associated with the third antisymmetrical
mode shape (Fig. 8).

Two approaches were usSed to determine the nonlinear response of the
simple idealization for the Mt. McKinley building, wherein yielding of the
coupling beams is considered, to & simple ground motion, described by a
half-cycle of displacement“, with maximum acceleration = 0.5 g in the hor-
izontal direction and one-third of that in the vertiecal. The H6V reduced
system was analyzed by the procedures outlined earlier and the eqaations
in nodal point coordinates were solved by DRAIN-2D°, a computer program
based on standard frame analysis procedures. The results (Figs. 9 and 10)
indicate that the two analyses lead to essentially the same displacement
response, but the forces determined from DRAIN-2D analysis oscillate about
those determined from analysis of the reduced system. These oscillations
do not disappear even when the integration time step in the DRAIN-2D analy-
sis is reduced to half the value used in analysis of the reduced system.

An operation count indicates that the computational effort required for
analysis of the reduced system is 20% to 50% of that required for the ori-
ginal system in nodal point coordinates. Obviously, with the use of gen-
eralized coordinates, not only is the size of the problem and computational
effort greatly reduced but, by eliminating the unimportant higher modes

of vibration, the spurious oscillations in the numerical calculations are
eliminated.



ANALYSIS OF EARTHQUAKE-DAMAGED BUILDINGS

Some of the damage to McKinley Building caused by the 1964 Alaska
earthquake is apparent in Fig. 1. The response of the mathematical model
of an end wall of the building (Fig. 2) to a simulated motion®, intended
to represent the ground shaking in Anchorage, was determined by the pro-
cedure outlined earlier. The results are summarized in Figs. 11-13.

Beams on the second through eighth steries underwent the most exten-
sive yielding, each of which accumulated a total plastic rotation of more
than 6.02 radians during more than 20 yielding excursions (Fig. 11).

Cyclic rotation ductility demand exceeded 10, an:excessive demand for an
ordinarily reinforced deep Beam. The analysis thus predicted severe
inelastic action in these beams which failed due to inadequate ductility.
The prediction was generally consistent with the observed damage, beams

from the sécond through the ninth stories having been severly damaged during
the earthquake.

Axial force envelopes for wallsz(Fig. 12) indicate no resulting axial
tension, and therefore no possibility of uplifting of the foundation or
failure of walls in tension. A significant difference in the magnitude of
developed axial compression in two identical walls gave rise to substantially
different sectional moment capacities. Therefore, one of the two identical
walls with smaller moment capacity was more vulnerable to yielding than
the other wall; this is consistent with the observed damage.

Although yielding in walls was not considered in the analysis, it can
be examined by studying the force distribution at selected time steps. For
example, at .t = 16.9 segonds, beams in the third through eighth stories had
Just undergone three large, consecutive yielding cycles. They were assuemd
to fail at this point and part of the resistance to story overturning moment,
formerly offered by axial forces in the walls, was no longer available at
these stories. Wall sections across affected stories had therefore to re-
sist more moment to compensate for the loss of the axial-force couple. This*
additional moment was assumed to be resisted equally by the two outside walls.
The resulting moment distribution is presented in Fig. 13, indicating that
wall sections from the fourth story down were stressed beyond yielding capa-
city. Although actual redistribution of the couple due to axial forces in
the walls after some beams have failed is much more complicated, this simple
analysis of redistribution of moments indicates a yielding tendency in these
lower story wall sections.. In fact, yielding did occur in the third story
wall section (Fig. 1).

" A similar analytical investigation® of the performance of the Banco de
America building during the Mangua earthquake led to conclusions consistent
with the actual damage. Coupling beams underwent significant yielding but
the walls were essentially undamaged. The excellent performance of this
building suggests that, for coupled shear walls to be most effective as a
structural system, walls should be designed to remain elastic, thus justify-
ing the assumption of linearly elastic walls in thisanalytical procedure.

CONCLUSION

Under the assumption that inelastic action is confined to the coupling
beams, coupled shear wall buildings can be most effectively analyzed by



expressing the deflections as a linear combination of the first few natural
mode shapes in lateral (horizontal) and longitudinal (vertical) vibration
of individual cantilever walls. In this approach, the vertical inertia,
important in the dynamics of coupled shear walls, need not be neglected;
and any mechanical model for the coupling beams can be employed. This
analysis procedure requires considerably less computational effort than
standard computer programs do. Using the technique presented earlier,
results were given of earthquake response analyses of two existing coupled
shear wall buildings damaged during earthquakes. It was shown that damage
predictions based on analytical results are generally consistent with
observed damage.
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